
ACCELERATED UNSUPERVISED FILTERING

FOR THE SMOOTHING OF ROAD PAVEMENT SURFACE IMAGERY

Henrique Oliveira
1,3

, José Caeiro
2,3

, Paulo Lobato Correia
1

1
Instituto de Telecomunicações – Instituto Superior Técnico

2
Grupo de Sistemas de Processamento de Sinal – SIPS/INESC ID

3
Escola Superior de Tecnologia e Gestão – Instituto Politécnico de Beja

ABSTRACT

An accelerated formulation of the Unsupervised Infor-

mation-theoretic Adaptive Image Filtering (UINTA) method

is presented. It is based on a parallel implementation of the

algorithm, using the Open Computing Language (OpenCL),

while maintaining the precision and efficiency of the origi-

nal method, which are briefly discussed focusing on the

respective computational complexities. The experimental

computational efficiency is compared with the one obtained

using the standard implementation, highlighting the signifi-

cant improvement of computational times achieved with the

proposed one. This new implementation is tested for the

smoothing of road pavement surface images, for which the

original method had been previously applied, showing the

clear advantage of its use.

Index Terms— Road crack detection, image filtering,

density estimation, computational complexity, entropy re-

duction.

1. INTRODUCTION

Pavement surface imagery acquired during high speed road

surveys, captured using INO’s LRIS 4K model [1], present a

high variance in pixels intensities. This represents a chal-

lenge when developing automatic algorithms for road

pavement surfaces distress detection, with most algorithms

targeting the detection of road cracks [2].

Texture smoothing filtering techniques can be applied to

this kind of imagery, to reduce the variance of pixel intensi-

ties, especially in regions not revealing crack distresses,

ensuring that an adequate segmentation procedure will then

be able to better distinguish between crack and no-crack

pixels [3]. A modern noise reduction method was proposed

by Awate and Whitaker whose principles stand close to the

non-local-means algorithms [4]. This kind of methods ad-

dress the preservation of structure in digital images [5],

which is an important characteristic when dealing with the

road crack detection problem, since crack information in

images may not be severely deteriorated when a smoothing

technique is applied.

The authors acknowledge the support from Fundação para a Ciên-

cia e Tecnologia (FCT) and Instituto de Telecomunicações

(http://www.it.pt/), under project PEst-OE/EEI/0008/.

Reducing the entropy of the intensity patterns in image

regions, by applying a filtering technique like the Unsuper-

vised Information-theoretic Adaptive Image Filtering

(UINTA) [4], is a smoothing filtering strategy that can be

successfully included in a road pavement surface crack

detection system, as shown in [3]. Nevertheless, the result-

ing processing times are very high, due to the computational

complexity of the algorithm, O(|T||Ai|E
D
), where |T| is the

total number of pixels of the image, |Ai| is the size of a ran-

dom sample used in the entropy estimation procedure, E is

the neighborhood window size and D is the image dimen-

sion.

Two approaches for improving the computational times

may be pursued, notably: to choose a more efficient density

estimation algorithm or to implement a parallel version of

the UINTA algorithm.

Following the first approach, a nonparametric density es-

timation, capable of dealing with the computational re-

quirements of large images, is described in [6]. It uses a fast

algorithm, in terms of dataset size and dimensionality, based

on the kd-tree probability density estimation. It is also ex-

perimentally demonstrated in [7] that dual-tree methods

give the best results when dealing with high dimensional

multivariate nonparametric probability density estimations.

Other approaches presented in the literature for improving

the computational speed of kernel density estimation meth-

ods include the proposal made by Silverman, which is based

on the Fast Fourier Transform (FFT) [8], while the proposal

made by Elgammal et al. is based on the Fast Gauss Trans-

form [9]. Recent parallel implementation proposals were

suggested by Michailidis and Margaritis for GPUs with the

CUDA framework [10], as well as proposed by Srinivasan

et al [11]. From the scientific literature, no OpenCL imple-

mentation based on parallel computing was found, this

framework considered a royalty free open standard for cross

platform parallel programming of modern processors, allow-

ing an heterogeneous model of computing not restricted to

one brand of GPUs as CUDA.

However, the probability density estimate adopted in

reference [7] is based on the entire set of image intensities,

resulting on O(n log(n)) computational complexity, where n

is the total number of pixels in the image sample. In

UINTA, a more local and problem connected approach is

followed, resulting in a lower computational complexity.

Due to the locality of UINTA, it is easy to achieve good

speedups with a parallel implementation of the algorithm,

instead of following approaches [7], [8] and [9]. Therefore a

parallel version of the UINTA algorithm implemented with

the OpenCL framework is presented, these GPU based par-

allel programs being considered a good low-cost solution for

improving the computational times, as demonstrated in this

paper for the development of automatic systems for the

detection of cracks on images. These automatic crack detec-

tion systems typically demand a significant computational

effort due to handling input images of large size. Therefore,

efficient pre-processing procedures are needed to smooth

them without significantly degrading the crack structures.

The paper organization is as follows. Section 2 presents

the crack detection system architecture considered, includ-

ing the image acquisition procedures and subsequent pro-

cessing. Section 3 describes the theoretical and practical

formulation of the proposed smoothing approach, discusses

the corresponding computational complexity and explains

how to achieve a low-cost fast implementation. Section 4

provides a set of experimental results and their discussion.

Section 5 draws some conclusions and presents hints for

future work

2. SYSTEM ARCHITECTURE

Since the proposed efficient smoothing strategy will be

tested in the context of a system that detects cracks in road

pavement surface images, this section describes the consid-

ered system architecture. In this paper a simple crack detec-

tion system is used, mainly to allow highlighting the im-

portance of the smoothing step. The system architecture is

illustrated in Figure 1, including the imaging system used

for imagery acquisition during high speed road pavement

surveys, the entropy reduction (smoothing) module and the

subsequent crack detection by thresholding and processing

of the resulting connected components for the identification

of crack segments.

The road surface images considered were acquired by

the INO’s LRIS 4k system. It features a laser imaging sys-

tem for road pavement surface imagery acquisition, allow-

ing operation at the high speeds (70 km/h and higher) re-

quired for safe driving in highways [1]. The system is com-

posed by two sets of linescan sensors combined with two

laser illuminators (positioned at the left and right on the

backside of the vehicle), providing a good contrast between

crack and no-crack regions of the image. Each linescan set

covers half road lane outputting images with dimensions of

4096×2048 pixels, with the larger image dimension being

parallel to the road axis and the other dimension covering

approximately 2 meters of pavement surface (half road

lane). All the images have 8-bit gray level resolution, pre-

senting pixel intensities ranging from 0 to 255. A sample

pair of images simultaneously acquired by the left and right

sensors are shown in Figure 2.

Using such a simple system architecture, as shown in

Figure 1, is only possible if a very efficient entropy reduc-

tion module can be designed for smoothing the images of

road pavement surface. Since a very large amount of imag-

ing data is collected while surveying existing road networks,

a timely processing of the acquired footage is required.

Therefore, it is important to have a processing system of low

computational complexity, notably at the entropy reduction

stage where a nonparametric multivariate probability density

estimation method is applied. This allows considering a very

simple segmentation approach for crack detection, such as

the modified Otsu thresholding operator proposed by Wan

and Wang [12].

3. PROPOSED FAST UNSUPERVISED FILTERING

The proposed fast probability density estimation filtering

approach uses a parallel version of the unsupervised infor-

mation-theoretic adaptive image filtering [4].

Modern Graphic Processing Units (GPUs) are very effi-

cient at manipulating images and their highly parallel struc-

ture makes them more effective than general purpose Com-

puter Processing Unit (CPU), for algorithms where pro-

cessing of large blocks of data can be done in parallel. The

OpenCL is a framework for writing programs consisting of

heterogeneous processors: CPUs, GPUs, Digital Signal

Processors, etc. OpenCL has an Application Program Inter-

face (API) that is used to define and control the processor

Imagery
database

Entropy reduction

Thresholding
(intensities < th)

Connected components identification

Crack Regions
Fig. 1. Architecture of the proposed crack detection system.

Fig. 2. Sample road pavement surface images acquired by the

INO’s LRIS 4k model.

platforms and also a C-based language for writing functions

that execute on the processing devices (kernels).

The entropy estimation in UINTA is based on a classical

multivariate Gaussian kernel density estimation. This leads

to O(n
2
) computational complexities, where n is the total

number of pixels in the image sample. The UINTA algo-

rithm authors state that their method is computationally

inefficient and therefore limit the size of the samples that

can be used to a maximum of |Ai| = 1000 of points, defined

on a discrete Cartesian grid. Even for such small samples,

the procedure is very slow. These are clearly limiting factors

for the direct application of the UINTA methodology to

smooth pavement surface images. A system for the automat-

ic detection of cracks based on UINTA has been proposed in

[3], where only a subset of carefully selected image blocks

are pre-processed using this smoothing technique, rather

than the whole image.

Despite the computational limitations mentioned by re-

searchers, the UINTA method presents good experimental

results and is theoretically sound. Central to the UINTA

filter is the computation of an estimate of the entropy given

by:

 (̃) [(̃)]. (1)

The entropy is estimated over the stationary random vec-

tor ̃ (̃ ̃), representing image regions. The full set of

image pixels is represented by { }. The subjacent random

process is considered to be stationary and ergodic. The orig-

inal image is represented by (), the corresponding set of

neighborhood intensities by () and regions by (). The

corresponding random variables for the observed degraded

image are represented by ̃, ̃ and ̃.

For a stationary ergodic process, the entropy of the im-

age may be approximated by the average of estimated local

entropies:

 (̃) [(̃)]

| |
∑ [(̃)] { }

, (2)

where |T| is the number of points in the image and is

the vector of intensities associated to each point . The

entropy minimization procedure of UINTA, which is based

on the gradient descent technique, can be written as:

 ̂ ̂

 ̂
 (3)

where x is the image intensity for each point in the image

and the derivative of the entropy is given by (4), where C is

the covariance matrix and represents the computed value

from the pdf estimate.

 ̂

| |

 [(̃)]

 ̂

| |

 ̂
 ̂

∑
 (̂ ̂)

∑ (̂ ̂)

 (̂ ̂)
(4)

The proposed pseudo code for the kernel is presented in

Figure 3.

Fig. 3. UINTA pseudo code based on parallel processing.

The kernel is applied to each pixel of the sourceImage

and the updated value of the pixel, after the application of

the parallel UINTA kernel, is stored in the outputImage. The

coordinates of the image are referenced by (ti_col, ti_row).

The read_image() and write_image() functions are provided

by OpenCL with appropriate sampling procedures.

Host:
AMD Fx 8350

GPU:
AMD Radeon HD7870

...CU
1

CU
2

CU
16

W1

W2

W16

W1

W2

W16

W1

W2

W16

.

.

.

Fig. 4. Parallel processing computer architecture.

The (Fi_row, Fi_col) represent a previously generated

random Gaussian distributed vector sample of Ni points,

centered on (0,0) coordinate and is used to form the

(Ai_row, Ai_col) vector of coordinates that will point to the

local image intensities used to estimate the pdf, as proposed

in [4].

 ParallelUinta(sourceImage, outputImage, Fi_row, Fi_col,

 nrows, ncols)

 Ni = 1000

 W = 4

 sigma = 3.0

 lambda = 0.2 * sigma * sigma / 9.0

 ti_col = get_global_id(0)

 ti_row = get_global_id(1)

 xi = read_imagef(sourceImage, ti_row, ti_col)

 FOR k = 0; k < Ni; k++

 sum = 0.0

 Ai_col = Fi_col[k] + ti_col

 Ai_row = Fi_row[k] + ti_row

 FOR u = -W; u <= W; u++

 FOR v=-W; v <= W; v++

 x_uv = read_imagef(sourceImage, ti_row+u, ti_col+v)

 ai_uv= read_imagef(sourceImage, Ai_row+u, Ai_col+v)

 a = x_uv - ai_uv

 sum += a * a

 END FOR

 END FOR

 xk = read_imagef(sourceImage, Ai_row, Ai_col)

 p = exp(sum / (-0.5 * sigma))

 sum_k += p

 sum_j += p * (xi - xk)

 END FOR

 r = sum_j / (sigma * sum_k)

 y = xi - lambda * r

 write_imagef(outputImage, ti_col, ti_row, y)

 END

Fig. 5. Experimental sample results: original sample regions taken from original images, two showing: cracks, a white lane marking and

without cracks (left column, from top to bottom); the respective segmentation results using th = 60, computed by means of the modified

Otsu algorithm (2nd column); smoothed images using the proposed fast probability density estimation filtering (3rd column); the respective

segmentation results (right column), again using th = 60 to better highlight the effects of smoothing, i.e. less number of no-crack regions.

In the present proposal, the parallel version of the algo-

rithm was programmed using version 1.2 of the OpenCL

framework standard. An AMD Radeon HD 7870 OC GPU

was used for the implementation of the algorithm. The HD

7870 GPU has 20 CUs (Compute Units). Each CU can exe-

cute a different kernel program.

A maximum of 256 processing threads, with simultane-

ous concurrent execution are allowed, and they may be

assigned to any subset of CUs. Due to the geometry of the

images, with dimensions that are powers of 2, and the nature

of the parallel version of the algorithm, 16 CUs were chosen

for the parallel algorithm. The corresponding parallel pro-

cessing architecture is shown in Figure 4. The expected

speedup is proportional to the number of work-items (WIs),

thus leading to a significantly reduction in processing time

when compared to a single core based computation. The

adopted number of WIs is the maximum allowed (256) for

parallel execution on the HD 7870 GPU, corresponding to

16 CUs times 16 WIs. The same number of iterations as

suggested in [4], i.e. 10 iterations per image, is adopted.

After the entropy reduction, a simple segmentation by

thresholding can be performed using the intensity th com-

puted according to proposal made in [12].

4. EXPERIMENTAL RESULTS

Experimental results are presented based on imagery ac-

quired by INO’s LRIS 4K model [1], taken during an exper-

imental road pavement survey over Canadian roads.

The proposed implementation of UINTA was developed

using the C programming language on the Linux OS and

version 4.7.3 of the GNU C compiler, running on a single

core of the AMD FX 8350 CPU. Typical processing times

achieved are shown in Table 1.

Parallel processing times show a speedup of approxi-

mately 75 times when compared to the original single core

UINTA version (see Table 1, for the comparison between

single core and parallel processing times based on 16 CUs),

referred to the FX 8350 CPU and the HD 7870 GPU. The

execution times for the original and parallel versions are

linearly proportional to the number of images pixels. Further

improvements on computation times are foreseeable if a

more complex kernel density estimation is pursued, aligned

with references [10] and [11], but not very significant since

parallel UINTA leads to few computations per pixel as

shown in the pseudo code in Figure 3. These small im-

provements are related to the improvement of the inner for

cycles in the kernel represented in Figure 3, by taking ad-

vantage of loop unrolling. Michailidis and Margaritis state

in [10] that the performance gains of the two CUDA based

optimized implementations of the kernel density estimation

algorithm versus the naïve implementation are small. This

naïve implementation is of the same kind as proposed in this

paper, but with more steps, since UINTA has a gradient

descent procedure that leads to some calculus simplifica-

tions. The computational efficiency achieved makes it pos-

sible the use of this entropy reduction approach for the

smoothing of pavement surface images using a low-cost

hardware platform.

Image size
Processing times (sec.)

Single 16 CUs / 256 WIs 20 CUs / 240 WIs

256×256 130 1.71 1.98

512×512 510 6.77 7.64

1024×1024 2079 26.71 30.22

2048×2048 8208 107.26 123.25

4096×4096 35016 467.75 544.46

Table 1. Computational times as a function of sample image size.

Sample results obtained by the segmentation module af-

ter smoothing using the proposed parallel implementation of

UINTA are presented in the right column of Figure 5, which

may be compared to those obtained using nonsmoothed

images (shown on the 2
nd

 column). Crack regions are shown

as white regions while the remaining image regions do not

contain crack pixels. These results provide a good match

when visually evaluated by a road expert.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a parallel implementation of UINTA filtering

method that leads to a considerable computational time

improvement (approximately 75 times), is proposed. The

new implementation obtains exactly the same results of the

original UINTA, while considerably improving the compu-

tational time required to apply the algorithm.

The parallelization of other smoothing methods using the

same hardware devices is part of the planned future work.

REFERENCES

[1] INO, [Online], http://www.ino.ca/en/examples/laser-road-

imaging-system-(lris)/, February 2014.

[2] H. Oliveira and P. Correia, "Automatic Road Crack Detection

and Characterization," IEEE Transactions on Intelligent

Transportation Systems (T-ITS), vol. 14, no. 1, pp. 155-168,

March 2013.

[3] H. Oliveira, J. Caeiro and P.L. Correira, "Improved Road

Crack Detection Based on One-class Parzen Density Estima-

tion and Entropy Reduction," in Proceedings of IEEE Interna-

tional Conference on Image Processing – ICIP2011, Hong

Kong 2010.

[4] S. Awate and R. Whitaker, "Unsupervised, Information-

Theoretic, Adaptive Image Filtering for Image Restoration,"

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (TPAMI), vol. 28, no. 3, pp. 364-376, March 2006.

[5] A. Buades, B. Coll, J.M. Morel, “A review of image de-

noising algorithms, with a new one,” in SIAM Journal on

Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490-

530, 2005.

[6] A. Gray and A. Moore, "Nonparametric Density Estimation:

Toward Computational Tractability," in Proceedings of SIAM

International Conference on Data Mining, San Francisco,

USA, May 2003.

[7] D. Lang, M. Klaas and N. Freitas, "Empirical Testing of Fast

Kernel Density Estimation Algorithms, " University of British

Columbia, Department of Computer Science, Technical Re-

port TR-2005-03, 2003.

[8] B. Silverman, “Algorithm AS 176: Kernel density estimation

using the fast fourier transform,” Applied Statistics, vol. 31,

pp. 93-99, 1982.

[9] A. Elgammal, “R. Duraiswami, L.S. Davis, “Efficient kernel

density estimation using the fast gauss transform with applica-

tions to color modelling and tracking,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 25, pp. 1499-

1504, 2003.

[10] P.D. Michailidis, K.G. Margaritis, “Accelerating kernel densi-

ty estimation on the GPU using the CUDA framework,” Ap-

plied Mathematical Sciences, vol. 7, no. 30, pp. 1447-1476,

2013.

[11] B.V. Srinivasan, Q. Hu, R. Duraiswami, “GPUML: Graphical

processors for speeding up kernel machines,” Workshop on

High Performance Analytics-Algorithms, Implementations

and Applications, 2010.

[12] Y. Wan and J. Wang, "A Modified Otsu Image Segmentation

Method based on the Rayleigh Distribution," in Proceedings

of 3th IEEE International Conference on Computer Science

and Information Technology, July 2010.

