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ABSTRACT
This paper considers the problem of identifying power line
outages throughout an electric interconnection based on
changes in phasor angles observed at a limited number of
buses. In existing approaches for solving the line outage
identification problem the unobserved phasor angle data is
ignored and identification is based on the observed pha-
sor angles extracted from the data. We propose, instead, a
least-squares approach for estimating the unobserved phasor
angles, which is shown to yield a solution to the line outage
identification problem that is equivalent to the solution ob-
tained with existing approaches. This equivalence suggests
an implementation of the solution to the line outage identi-
fication problem that is computationally more efficient than
previous methods. A natural extension of the least-squares
formulation leads to a generalization of the line outages iden-
tification problem in which the grid parameters are unknown.

Index Terms— Power line outages, phasor measurement
units, sparsity, compressive sampling.

1. INTRODUCTION

It is well known that major blackouts have occurred due in
part to a lack of comprehensive situational awareness of the
power grid. Timely identifying outages, or more generally
abrupt changes in line parameters, is critical for wide-area
monitoring in order to avoid unexpected events (such as a
lightning strike or a tree fall) from spreading quickly, lead-
ing to a grid-wide blackout. Most existing approaches for
line outages identification are challenged by the combinato-
rial complexity issues involved and are thus limited to iden-
tifying single or at most double line outages [1–3]. Zhu and
Giannakis [1] have recognized the fact that the outaged lines
represent a small fraction of the total number of lines and re-
formulated the problem of identifying line outages as a sparse
vector estimation problem. Leveraging recent advances in
compressive sampling, they proposed a computationally ef-
ficient algorithm for identification of multiple line outages.
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Their approach uses only hourly basecase topology informa-
tion and local real-time voltage phasor angle measurements
obtained from phasor measurement units (PMUs).

This paper adopts the sparse linear model developed
in [4] in which only a subset of voltage phasor angle data is
observed. This model relates the change in bus voltage phases
to the sparse vector that captures information of line outages.
Existing approaches for identifying line outages extract the
model equations associated with the observed bus voltage
phases while completely ignoring the model equations of the
unobserved data [1–3]. We propose instead to estimate the
unobserved phasor angle data using a least-squares approach.
It turns out that recovering the sparse vector with the un-
observed data estimated using least-squares is equivalent to
recovering the sparse vector based only on the extracted data.
This equivalence suggests a more efficient implementation of
the solution proposed in [4]. The least-squares formulation
also allows us to easily generalize the line-outages identifi-
cation problem to the case in which the grid parameters are
not accurately known. To this end, we develop an iterative
solution for estimating the grid parameters, the unobserved
data, and the sparse vector.

The paper is organized as follows: Section 2 formulates
the line outages identification problem. In Section 3 the least-
squares approach for estimating the unobserved phasor angle
data is developed, the deterministic approach is introduced,
and the relation of these methods is discussed. Section 4 gen-
eralizes the line outages identification problem to the case of
unknown grid parameters.

Notation: upper (lower) boldface letters will be used for
matrices (column vectors); ()T denotes transposition, I is the
identity matrix, || · ||p is the vector p-norm for p ≥ 1, || · ||0
is the l0 seminorm, which is equal to the vector’s number of
nonzero entries, and ||x||2W = xTWx. The Moonre-Penrose
pseudo-inverse of A is denoted by A†. An oblique projection
onto the subspaceR(A) is denoted by PA, and an orthogonal
projection ontoR(A) is denoted by P⊥A .

2. LINE OUTAGE IDENTIFICATION

Consider a power transmission network N with N buses
(a.k.a nodes) and L transmission lines (a.k.a branches) that



are represented by the set E . We partition the network buses
into two subsets: the subset NI of observable buses in the
internal system, and the subset NE of unobservable buses of
the external system, where NI ∩ NE = ∅. The vectors θ
and p represent the voltage phasor angles of all buses in the
network and the corresponding injected power variables. The
linear DC power flow model [5, 6] provides a linear approxi-
mation of the actual AC system, in which the voltage phasor
angle data θ is related to the injected power p through

p = Bθ. (1)

The matrix B is referred to as the weighted Laplacian matrix
and is uniquely determined by the line reactance parameters
and the topology-bearing information. Specifically,

B = MDMT =

L∑
l=1

1

xl
mlm

T
l , (2)

where the matrix M, formed by columns {ml}Ll=1, is referred
to as the bus-line incidence matrix and is determined by the
network topology. The diagonal matrix D has its lth diagonal
entry equal to the inverse reactance 1/xmn if l corresponds
to the line (m,n). Note that the matrix B is rank deficient
and has the vector 1 in its null space. If the power network
is connected, the matrix B has rank N -1 [4]. With the refer-
ence bus convention, in which one generation bus is chosen as
reference with its phasor angle set to zero, the (N -1)×(N -1)
matrix B has full rank and can be formed by M as in (2) after
removing the row corresponding to the reference bus in the
incidence matrix. Given the pre-event network topology, and
the pre- and post-event internal phasor angle vectors, namely
θI and θ′I , various approaches based on the DC model (1) are
proposed in [1–4] for unveiling the subset Ẽ ⊂ E of line out-
ages.

Recognizing that the number of line outages is a small
fraction of the total number of lines, line-outage identification
can be formulated as sparse vector estimation [4], i.e.,

Bθ̃ = Ms + η, (3)

where the sparse vector s captures information of line out-
ages, and as such, recovering it translates to identifying line
outages. The noise η is usually modeled as a zero-mean ran-
dom vector with covariance σ2

ηI. The sparse representation
in (3) relates the vector θ̃ = θ

′ − θ representing the change
in bus voltage phases due to an occurence of an event to the
sparse vector s, whose support represents the subset of lines in
outage. This representation bypasses the combinatorial com-
plexity incurred by methods based on exhaustive enumeration
of all combinations to identifying single line outage or at most
double line outages [1–3].

Partition θ̃ and B as

θ̃ =

[
θ̃I
θ̃E

]
(4a)

B =
[

BI BE

]
(4b)

where the subscripts I and E are associated with the subsets
NI and NE , correspondingly. It then follows from (3) that

BI θ̃I + BE θ̃E = Ms + η. (5)

Since external nodes are assumed unobservable, the vector θ̃E
needs to be estimated as well for s to be recovered. Estimation
of the model parameters is addressed in the next section.

3. SPARSE RECONSTRUCTION

Given the model in (5), where only a subset θ̃I of voltage
phasor angle data is available, we next discuss two methods
for recovering the sparse vector s: the least-squares approach
and the deterministic approach.

3.1. Least-squares approach

Using the least-squares criterion for estimating both the un-
observable phasor angle data θ̃E and the sparse vector s, the
following optimization is obtained:

min
s,θ̃E

||BI θ̃I + BE θ̃E −Ms||2, s.t. ||s||0 ≤ κ (6)

where κ represents the sparsity level, i.e., the number of
nonzero entries in s. Optimizing with resect to θ̃E , we have

θ̃E = −B†E(BI θ̃I −Ms), (7)

where we assume that BE has full column rank. Substituting
(7) into (6), the optimization reduces to

min
s
||P⊥BE⊥(BI θ̃I −Ms)||2, ||s||0 ≤ κ (8)

where P⊥
BE⊥

= (I−BE(BE
TBE)−1BE

T ) is an orthogonal
projection onto the left null space of BE .

Being an orthogonal projection, P⊥
BE⊥

is a symmetric
matrix whose eigenvalues are either 0 or 1. In particular, vec-
tors vR(BE) ∈ R(BE) are projected to 0 and are associated
with zero eigenvalues, whereas vectors vN (BET ) ∈ N (BE

T )
remain unaltered by this projection and are associated with
unit eigenvalues. The eigen-decomposition of P⊥

BE⊥
can thus

be represented by

P⊥BE⊥ =
[

QI QE

] [ I 0
0 0

] [
QT
I

QT
E

]
= QIQ

T
I (9)

where QI consists of orthonormal eigenvectors vN (BET ) of
P⊥

BE⊥
, which form a basis for N (BE

T ). Using the eigen-
decomposition of P⊥

BE⊥
in (8) and the fact that the columns

of QI are orthonormal, and denoting yQ = QT
I BI θ̃I and

AQ = QT
I M, the optimization reduces to

min
s
||yQ −AQs||2, ||s||0 ≤ κ. (10)



Note that the formulation of (10) only requires an orthonor-
mal basis QI to the null space N (BE

T ). Efficient recovery
of s can then be obtained using approaches for reconstructing
sparse coefficient vectors in a linear regression model [7].

An alternative way to obtain the optimization in (8) is by
applying the projection operator P⊥

BE⊥
directly on (5). Not-

ing that BE θ̃E lies in R(BE), it is omitted when projected
onto N (BE

T ), and the model is then reduced to

P⊥BE⊥BI θ̃I = P⊥BE⊥Ms + P⊥BE⊥η. (11)

Using the eigen-decomposition of P⊥
BE⊥

and the fact that the
matrix QI is of full column rank, the model in (11) is equiv-
alent to

yQ = AQs + QT
I η, (12)

where the random vector QT
I η has zero mean and covariance

σ2
ηI. Finally, solving for the sparse s that minimizes the least

squares error in (12) yields (10).

3.2. The deterministic approach

Let us now introduce what we refer to as the deterministic
approach, which is taken in [1–4] to cope with the fact that
only a subset of voltage phasor angle data is observable. In
this approach, the model in (3) is first multiplied from the left
with B−1, assuming the inverse exists, to obtain[

θ̃I
θ̃E

]
= B−1Ms + B−1η. (13)

Then, the subset of equations corresponding to the observed
internal system bus voltage phases is extracted as

θ̃I = [B−1]IMs + [B−1]Iη. (14)

Next, the compact singular value decomposition (SVD) of
[B−1]I = UIΣIV

T
I is introduced in (14) to account for the

colored perturbation introduced by the inverse. Finally, defin-
ing yV = Σ−1I UT

I θ̃I and AV = VT
I M, the following sparse

linear regression model is obtained in [4]:

yV = AV s + VT
I η, (15)

where VT
I η is a zero-mean random vector with covariance

σ2
ηI. The vector s is then selected as

min
s
||yV −AV s||2, ||s||0 ≤ κ. (16)

3.3. Discussion

We next discuss the connection between the least-squares ap-
proach and the deterministic approach.
Theorem: The sparse linear models introduced in (12) and
(15) are linearly related through a unitary transformation.
The two models are identical iff the orthonormal bases QI =
VI .

To prove the theorem, we introduce the following lemma.
Lemma: The square matrix QT

I BI is invertible and its in-
verse is given by

(QT
I BI)

−1 = [B−1]IQI . (17)

By partitioning the matrices B and B−1 in the following
identity into two sub matrices, corresponding to internal and
external measurements, i.e.,

B−1B =

[ [
B−1

]
I[

B−1
]
E

]
·
[

BI BE

]
= I (18)

it follows that [
B−1

]
I
BI = I (19a)[

B−1
]
I
BE = 0. (19b)

Specifically, [B−1]I is a left inverse of BI , and the rows of
[B−1]I span the left null-space of BE (i.e.,N (BT

E)), which is
orthogonal to the range space of BE (i.e., R(BE)). We then
conclude from (19a) that the matrix PBI = BI [B

−1]I is an
oblique projection onto the column space of BI . Similarly, its
transpose PBI

T = P[B−1]I
T = [B−1]I

T
BI

T is an oblique
projection onto the row space of [B−1]I .

Multiplying QT
I BI by [B−1]IQI from the right, we ob-

tain (
QT
I BI

) (
[B−1]IQI

)
= QT

I

(
BI [B

−1]I
)
QI

=
(
P[B−1]I

TQI

)T
QI

= QT
I QI (20)

where the last equality follows from the fact that QI is a basis
for the left null space of BE , which is spanned by the rows
of [B−1]I . Recalling that QI is an orthonormal basis, it fol-
lows from (20) that the matrix [B−1]IQI is a right inverse of
QT
I BI .

To show that [B−1]IQI is also a left inverse of QT
I BI and

thus (QT
I BI)

−1 = [B−1]IQI , we use the fact that P⊥
BE⊥

=

QIQ
T
I is an orthogonal projection onto the left null space of

BE and the identity in (19a), i.e.,(
[B−1]IQI

) (
QT
I BI

)
= [B−1]I

(
QIQ

T
I

)
BI (21)

=
(

[B−1]IP
⊥
BE⊥

)
BI

=
(
P⊥BE⊥ [B−1]I

T
)T

BI

= [B−1]IBI = I,

completing the proof of the lemma. �
To prove the theorem, we show that applying the invert-

ible linear transformation TQ→V = Σ−1I UT
I (QT

I BI)
−1 on



(12) yields the model in (15). Specifically,

Σ−1I UT
I θ̃I =

Σ−1I UT
I (QT

I BI)
−1QT

I Ms + Σ−1I UT
I (QT

I BI)
−1QT

I η
(1)
=

Σ−1I UT
I

(
[B−1]IQIQ

T
I

)
Ms + Σ−1I UT

I

(
[B−1]IQIQ

T
I

)
η

(2)
=

Σ−1I UT
I [B−1]IMs + Σ−1I UT

I [B−1]Iη
(3)
=

Σ−1I UT
I UIΣIV

T
I Ms + Σ−1I UT

I UIΣIV
T
I η

(4)
=

VT
I Ms + VT

I η, (22)

where (17) is used in (1), (2) follows by noting that P⊥
BE⊥

=

QIQ
T
I is a projection onto N (BE

T ), the SVD decomposi-
tion of [B−1]I is used in (3), and (4) follows since UI is
unitary.

Using (17) and the SVD decomposition of [B−1]I , the
linear transformation TQ→V reduces to

TQ→V = Σ−1I UT
I (QT

I BI)
−1

= Σ−1I UT
I [B−1]IQI

= Σ−1I UT
I UIΣIV

T
I QI

= VT
I QI . (23)

Noting that both P⊥
BE⊥

= QIQ
T
I and P⊥

[B−1]I
T = VIV

T
I

are orthogonal projections onto the same subspace,N (BE
T ),

and that an orthogonal projection is a unique operator, we ob-
tain

QIQ
T
I = P⊥BE⊥ = P⊥

[B−1]I
T = VIV

T
I , (24)

from which it follows that TQ→V is unitary.
Since the models are linearly related through the unitary

transformation TQ→V = VT
I QI , they are identical when

VT
I QI = I. (25)

Rearranging and multiplying both sides by VI from the left,
we obtain

0 = VI

(
VT
I QI − I

)
=
(
VIV

T
I

)
QI −VI

(1)
=
(
QIQ

T
I

)
QI −VI

= QI

(
QT
I QI

)
−VI

(2)
= QI −VI (26)

where (1) follows from (24), and (2) follows since the
columns of QI are orthonormal. Since VI has full-column
rank, it follows from (26) that VT

I QI = I iff QI = VI , i.e.,
the two models are identical if and only if QI = VI . �

A direct consequence of the Theorem is that the optimza-
tion based on the least-squares approach (10) is equivalent to

the optimization formulated in [4] based on the deterministic
approach (16). This equivalence shows that the deterministic
approach is optimal in the least-squares sense. The compu-
tational complexity, though, is not the same for both meth-
ods. In [4], the matrix B is first inverted, its NI rows are ex-
tracted and [B−1]I is finally decomposed into its SVD form,
whereas the approach that we propose requires only to find an
orthonormal basis for the left null space of BE , which can be
obtained using aQR decomposition. Furthermore, the matrix
BE is sparse since it is a sub-matrix of the sparse matrix B,
whereas its inverse B−1 is, in general, dense.

4. UNCERTAINTY IN GRID PARAMETERS

Section 2 considers the problem of line outages identification
where it assumes that the grid parameters, namely the suscep-
tances {bl} = {−1/xl} of all branches are known. We now
generalize the problem to the case in which the exact value of
these parameters is not known, but rather prior information is
available in the form:

b = b0 + v. (27)

The vector b0 is deterministic whose values are known and
may be based on estimates from past observations and v is an
error vector with zero mean and covariance matrix Λ. Note
that by a proper choice of some elements in the covariance
matrix Λ, we can also include cases in which no prior infor-
mation is given for some of the parameters, or alternatively,
when the exact value of some parameters is accurately known.
The prior information on b can be incorporated into the opti-
mization as a regularization term, i.e.,

min
s,θ̃E ,b

1

σ2
η

||BI θ̃I + BE θ̃E −Ms||2 + ||b− b0||2Λ−1 , (28)

s.t. ||s||0 ≤ κ

where

B = [BI BE ] =

L∑
l=1

−blmlm
T
l . (29)

Optimizing (28) with respect to s and θ̃E is equivalent to
optimizing the following objective function

J(s, θ̃E) =
1

σ2
η

||BI θ̃I + BE θ̃E −Ms||2 (30)

=
1

σ2
η

||P⊥BE⊥(BI θ̃I −Ms)||2+

1

σ2
η

||BE

(
θ̃E −BE

†(Ms−BI θ̃I)
)
||2,

which yields the same equations as obtained in (7) and (8),
i.e.,

θ̃E = BE
†(Ms−BI θ̃I), (31a)



min
s
||P⊥BE⊥(BI θ̃I −Ms)||2, ||s||0 ≤ κ. (31b)

Introducing the matrix A whose lth column is given by
al = mlm

T
l θ̃ and noting that Bθ̃ = −Ab, the objective

function in (28), viewed as a function of b, can be reduced to

J(b) =
1

σ2
η

||Ab + Ms||2 + ||b− b0||2Λ−1 , (32)

or alternatively to

J(b) = ||Ab0 + Ms||2
(σ2
ηI+AΛAT)

−1+ (33)

||(Λ−1 + (ATA)/σ2
η)1/2b−

(Λ−1 + (ATA)/σ2
η)−1/2(Λ−1b0 −ATMs/σ2

η)||2.

It is straightforward to see that J(b) in (33) is minimized for

bopt = (Λ−1 + (ATA)/σ2
η)−1(Λ−1b0 −ATMs/σ2

η)

= b0 − (σ2
ηΛ−1 + (ATA))−1AT (Ab0 + Ms), (34)

where

J(bopt) = ||Ab0 + Ms||2
(σ2
ηI+AΛAT)

−1 . (35)

We now summarize the procedure proposed for recover-
ing the sparse vector s given internal nodes measurements and
when only partial information is given on the grid parame-
ters. The algorithm starts with an initial estimate b = b0.
Given this initialization of b, we seek for a sparse vector s
which solves the optimization in (31b), and then estimate θ̃E
according to (31a). Having these estimates of s and θ̃E , we
estimate b according to (34). We continue iterating between
(31) and (34) until convergence. Note that at each iteration of
the algorithm the objective function is decreased. Note also
that in estimating the sparse vector s, rather than building its
support from the beginning at each iteration, we can exploit
information from previous iterations.
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