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ABSTRACT
We extend an earlier work of the same authors, which pro-
poses a minimax robust hypothesis testing strategy between
two composite hypotheses based on a squared Hellinger dis-
tance. We show that without any further restrictions the for-
mer four non-linear equations in four parameters, that have
to be solved to design the robust test, can be reduced to two
equations in two parameters. Additionally, we show that the
same equations can be combined into a single equation if the
nominal probability density functions satisfy the symmetry
condition. The parameters controlling the degree of robust-
ness are bounded from above depending on the nominal dis-
tributions and shown to be determined via solving a polyno-
mial equation of degree two. Experiments justify the benefits
of the proposed contributions.

Index Terms— Detection, hypothesis testing, robustness

1. INTRODUCTION

In many practical applications we are concerned with de-
tecting the presence or absence of an event. For example in
radar, radio signals are transmitted to detect (if any) aircrafts,
ships, motor vehicles or guided missiles. Unless the distur-
bance effects, which might corrupt the received signal are
fully known or can be determined a-priori, for which detec-
tion theory would be useless, we consider signals of random
nature, which are modeled by statistical hypotheses. To build
such a model, the main assumption is that the signals under
each hypothesis follow a certain probability distribution with
possibly some unknown parameters that are to be estimated.
However, such an assumption is rather optimistic and usually
there are some secondary physical effects that go under mod-
eled [1].
In such cases, a more realistic approach is to model the prob-
ability distributions to belong to a class of distributions F
based on some distance measure D. It is assumed that every
probability distribution which is at least ε close to the nominal
distribution G w.r.t. D is an element of F . The choice of the
unknown parameter ε depends on the degree of contamination
and it varies with the application. In this model, we have as
many classes as hypotheses, e.g., for binary hypotheses we
have two classes.

The ultimate task of the designer is to determine a single prob-
ability distribution from each class and a decision rule such
that some predefined performance measure is met. A well
known performance measure is the bounded error probabil-
ity. In other words, a decision rule is chosen which minimizes
the error probability for the worst case probability distribu-
tions from each class. In this way, a certain level of detection
can always be maintained. This type of optimization is called
minimax detection and the corresponding worst case distri-
butions are called least favorable distributions (LFD)s.
For some applications like pattern recognition, image or
speech classification, we are interested in a statistical test
that performs well on average. However, for safety oriented
applications such as forest fire detection, seismology, radar or
sonar, one is interested in maximizing the worst case perfor-
mance since the consequences of an incorrect decision might
be severe.
In this research field, one of the earliest works goes back to
Huber, who proposed a robust version of the probability ratio
test [2]. In his paper, he proved the existence of LFDs for
the ε-contamination class of distributions and showed that the
resulting test was obtained by clipping the nominal likelihood
ratios. Later, the same concept was extended to a wider class
of distributions that involves the ε-contamination class as a
special case [3], [4]. The models proposed by Huber are very
suitable for modeling the outliers, however, not all uncertain-
ties are due to outliers, some of them result from a modeling
mismatch.
In order to deal with the uncertainties due to modeling mis-
match, it was Levy who proposed a minimax robust hy-
pothesis testing approach that is based on a relative entropy
distance [5]. This approach has two basic drawbacks; first
it works only when the probability distributions satisfy the
symmetry condition, and second it might be difficult to deter-
mine the robustness parameter ε since its range is [0,∞]. In
[6], we proposed an alternative approach based on a squared
Hellinger distance which requires no symmetry assump-
tion. Additionally, the robustness parameter ε scales in [0, 1],
which makes it easier to determine. However, as mentioned
in the conclusion of [6], it is quite difficult and time consum-
ing to solve four non-linear equations in four parameters to
determine the LFDs and the robust decision rule.



In this paper, we show that the former four non-linear equa-
tions in four parameters can be reduced to two non-linear
equations in two parameters without loss of generality. If ad-
ditionally the probability distributions satisfy the symmetry
condition, we show that a single equation with a single pa-
rameter suffices to determine the LFDs. Finally, we propose
a method to find the maximum of the robustness parameters
above which a robust test can not be designed.
The organization of this paper is as follows. In the following
section, an overview of our previous work is outlined. In
Section 3, we show how to reduce the number of equations
to be solved to obtain the LFDs. In Section 4, we derive an
equation to determine the maximum of the robustness param-
eters. In Section 5, we provide some simulations and finally
in Section 6 we conclude the paper.

2. OVERVIEW OF THE PREVIOUS WORK

In this section, we briefly summarize [6] in order to provide a
basis for the follow-up work that will be presented in the next
sections. For detailed derivations the reader is referred to [6].

2.1. Problem Definition

Let (Ω,A , Pi) be a probability space, fi be a nominal prob-
ability density function and Y : Ω 7→ R be a random variable
which follows a continuous probability density function gi,
belonging to the set

Fi = {gi : S(gi, fi) ≤ εi}, (1)

based on a squared Hellinger distance

S(gi, fi) = H2(gi, fi) =
1

2

∫
R

(√
gi(y)−

√
fi(y)

)2

dy

(2)
when the hypothesis Hi, i = 0, 1, is true. A randomized
decision rule u(y) assigns each y toH1 with probability δ(y)
and to H0 with probability 1 − δ(y), where δ ∈ ∆, with
∆ = C0(R, [0, 1]), resulting in false alarm probability,

P 1
E(δ, f0) =

∫
R
δ(y)g0(y)dy (3)

miss detection probability,

P 2
E(δ, f1) =

∫
R
(1− δ(y))g1(y)dy (4)

and overall error probability,

PE(δ, f0, f1) = P (H0)P 1
E(δ, f0) + P (H1)P 2

E(δ, f1). (5)

The designer aims at solving the minimax optimization prob-
lem

δ̂, (ĝ0, ĝ1) = arg min
δ∈∆

max
(g0,g1)∈F0×F1

PE(δ, g0, g1) (6)

so that a certain level of performance can be guaranteed.

2.2. Least Favorable Distributions and the Decision Rule

The minimax optimization problem defined by (6) can be
solved using two coupled Lagrangians with (positive) param-
eters λ0, µ0 and λ1, µ1. Let L = f1/f0, and yl, yu ∈ R be
the lower and upper thresholds of the robust test which are
shown to be given by

yl = L−1

( 1
2 + µ1−1

λ1

1
2 + µ0

λ0

)2
 , yu = L−1

( 1
2 + µ1

λ1

1
2 + µ0−1

λ0

)2


(7)
respectively. Furthermore, let the decision regions be R1 =
{y : y < yl}, R2 = {y : yl < y < yu}, and R3 = {y : y >
yu}, then, by [6] we have the robust decision rule

δ̂(y) =


0, y ∈ R1

2µ0λ1

√
L(y)+λ0

(
2−2µ1+λ1(−1+

√
L(y))

)
2
(
λ0+λ1

√
L(y)

) y ∈ R2

1, y ∈ R3

(8)
and the least favorable densities,

ĝ0(y) =



1

4
(

1
2 +

µ0
λ0

)2 f0(y), y ∈ R1(
λ0

√
f0(y)+λ1

√
f1(y)

)2

(λ0+λ1+2(µ0+µ1−1))2
, y ∈ R2

1

4
(

1
2 +

µ0−1
λ0

)2 f0(y), y ∈ R3

(9)

and

ĝ1(y) =



1

4
(

1
2 +

µ1−1
λ1

)2 f1(y), y ∈ R1(
λ0

√
f0(y)+λ1

√
f1(y)

)2

(λ0+λ1+2(µ0+µ1−1))2
, y ∈ R2

1

4
(

1
2 +

µ1
λ1

)2 f1(y), y ∈ R3

. (10)

in four parameters.

2.3. Non-linear Equations

In order to determine the unknown parameters, one needs to
solve the set of four non-linear equations

c1

∫ yl

−∞
f0(y)dy +

∫ yu

yl

Φ(y)dy + c2

∫ ∞
yu

f0(y)dy = 1

c3

∫ yl

−∞
f1(y)dy +

∫ yu

yl

Φ(y)dy + c4

∫ ∞
yu

f1(y)dy = 1

√
c1

∫ yl

−∞
f0(y)dy +

∫ yu

yl

√
Φ(y)f0(y)dy +

√
c2

∫ ∞
yu

f0(y)dy

= 1− ε0
√
c3

∫ yl

−∞
f1(y)dy +

∫ yu

yl

√
Φ(y)f1(y)dy +

√
c4

∫ ∞
yu

f1(y)dy

= 1− ε1 (11)



where

c1 =
1

4
(

1
2 + µ0

λ0

)2 , c2 =
1

4
(

1
2 + µ0−1

λ0

)2

c3 =
1

4
(

1
2 + µ1−1

λ1

)2 , c4 =
1

4
(

1
2 + µ1

λ1

)2

and

Φ(y) =

(
λ0

√
f0(y) + λ1

√
f1(y)

)2

(λ0 + λ1 + 2 (µ0 + µ1 − 1))
2 ,

in four unknowns, which is quite challenging. It is therefore
desirable to reduce the number of equations as well as the
number of parameters, if possible.

3. REDUCING THE SYSTEM OF EQUATIONS

In this section, we show how the set of non-linear equations
in (11) can be reduced with and without regarding additional
constrains. Note that the first two equations are required to
make sure that ĝ0 and ĝ1 are density functions, i.e., they inte-
grate to one and the other two equations are required to guar-
antee that ĝ0 ∈ F0 and ĝ1 ∈ F1.

3.1. Without any Additional Constraints

In its current form, we have implicitly four unknowns µ0, µ1,
λ0, λ1 in four equations. After some manipulations we intend
to obtain only two equations in two parameters, yl and yu.
First, observe that L(yu) = c2/c4 and L(yl) = c1/c3. Then,
we can express the equations either in terms of c1/c3 or c2/c4.
We choose the former one and divide the first two equations
by c3 and the latter two by

√
c3. Substituting the first equation

in the third and the second equation in the fourth via 1/
√
c3

we get√
c1
c3

∫ yl

−∞
f0(y)dy +

∫ yu

yl

√
Φ(y)f0(y)

c3
dy +

√
c2
c3

∫ ∞
yu

f0(y)dy

= (1− ε0)

√
c1
c3

∫ yl

−∞
f0(y)dy +

∫ yu

yl

Φ(y)

c3
dy +

c2
c3

∫ ∞
yu

f0(y)dy

(12)

and∫ yl

−∞
f1(y)dy +

∫ yu

yl

√
Φ(y)f1(y)

c3
dy +

√
c4
c3

∫ ∞
yu

f1(y)dy

= (1− ε1)

√∫ yl

−∞
f1(y)dy +

∫ yu

yl

Φ(y)

c3
dy +

c4
c3

∫ ∞
yu

f1(y)dy

(13)

Once again considering the substitution c2 := c4L(yu) and
c1/c3 := L(yl), one sees that (12) and (13) are functions of
yl, yu, Φ(y)/c3, and c4/c3. In the following, we manipulate
Φ(y)/c3 such that it can be written in terms of c4/c3, yl and

yu. We first divide both the nominator and denominator of
Φ(y) by λ2

0, use the identity 1/
√
c1 = 1 + 2µ0/λ0 and get

Φ(y) =

(√
f0(y) + λ1

λ0

√
f1(y)

)2

(
1√
c1

+ λ1

λ0
+ 2µ1

λ0
− 2

λ0

)2 (14)

In the next step, we multiply both the nominator and denomi-
nator by (λ0/λ1)2 and use the identity 1/

√
c3 = |1 + (2µ1 −

2)/λ1| and get

Φ(y) =

(
λ0

√
f0(y) + λ1

√
f1(y)

)2

λ2
1

(
λ0

λ1

1√
c1
± 1√

c3

)2 . (15)

Diving (15) by c3 leads to

Φ(y)

c3
=

(
λ0

√
f0(y) + λ1

√
f1(y)

)2

(
λ0

√
1

L(yl)
± λ1

)2 . (16)

Note that we can also write

λ0 =
2
√
c1c2√

c2 ∓
√
c1
, λ1 =

2
√
c3c4√

c3 ∓
√
c4
. (17)

In (16) and the first equation of (17), the upper sign is chosen
if µ1+λ1/2 > 1 and for (17) second equation, if µ0+λ0/2 >
1. When µi + λi/2 > 1, i = 0, 1 is true, inserting λ0 and
λ1 from (17) into (16) and using c1 := c3L(yl) and c2 :=
c4L(yu) we get

Φ(y)

c3
=

(√
L(yl)

(√
L(yu)f0(y)−

√
f1(y)

)
√
L(yu)−

√
L(yl)

+

√
c4/c3

√
L(yu)(

√
f1(y)−

√
f0(y)L(yl))√

L(yu)−
√
L(yl)

)2

(18)

Equation (18) is only a function of the unknowns yl, yu and
c4/c3 as mentioned before. The choice of the upper and lower
signs in equations (16) and (17) can only change the signs
in (18), i.e., the equation remains the same except for the
sign changes inside it. Inserting (18) into (12) and (13), we
eventually have two equations in three parameters, yl, yu and
c4/c3. Both equations are quadratic in x =

√
c4/c3 and

therefore the solution of the equations, (12) and (13), with re-
spect to x yields two roots for each, i.e., two equations of type
x1 = h1(yl, yu) and x2 = h2(yl, yu) for (12) and two equa-
tions of type x3 = h3(yl, yu) and x4 = h4(yl, yu) for (13)
for some known functions hi, i = 1, . . . , 4. In the final step
one obtains two equations in two parameters with x1 = x3

and x2 = x4 or with x1 = x4 and x2 = x3. The equations
are lengthy therefore they will not be reproduced here.



3.2. When the Densities are Symmetric

In this section, we assume that the nominal probability
density functions satisfy the symmetry condition f0(y) =
f1(−y) and the robustness parameters are set to ε = ε0 = ε1.
As a consequence, L(−y) = 1/L(y), δ̂(−y) = 1 − δ̂(y)
and L̂(−y) = 1/L̂(y) hold [5]. This implies µ = µ0 = µ1,
λ = λ0 = λ1, c1 = c4, c2 = c3 and yl = −yu. As a result
we obtain

Φ(y) =

(√
f0(y) +

√
f1(y)

)2
(

1√
c3

+ 1√
c4

)2 . (19)

With these simplifications, there are implicitly two unknowns
µ and λ and it suffices to consider two equations from (11),
the first and the third or the second and the fourth. We select
the second and the fourth equations, and use the substitution
c3 := c4L(yu). Eventually, we obtain

1

c4
= L(yu)

∫ −yu

−∞
f1(y)dy

+ k(yu)

∫ yu

−yu

(√
f0(y) +

√
f1(y)

)2
dy +

∫ ∞
yu

f1(y)dy (20)

and

1− ε√
c4

= L(yu)

∫ −yu

−∞
f1(y)dy

+
√
k(yu)

∫ yu

−yu

√
f0(y)f1(y) + f1(y)dy +

∫ ∞
yu

f1(y)dy (21)

with k(yu) = L(yu)/(
√
L(yu) + 1)2. Squaring both sides of

(21) and inserting (20) into the outcome through c4, we get

L(yu)

∫ −yu

−∞
f1(y)dy + k(yu)

∫ yu

−yu

(√
f0(y) +

√
f1(y)

)2
dy

+

∫ ∞
yu

f1(y)dy − 1

(1− ε)2

(√
L(yu)

∫ −yu

−∞
f1(y)dy +

√
k(yu)·

∫ yu

−yu

f1(y) +
√
f0(y)f1(y)dy +

∫ ∞
yu

f1(y)dy

)2

= 0 (22)

4. MAXIMUM ROBUSTNESS PARAMETERS

In this section, we derive the maximum of the robustness pa-
rameters above which a robust test can not be designed. This
is equivalent to saying that the LFDs from each class become
identical.

4.1. General Case

First, we observe that the LFDs, (9) and (10), can totally
overlap if R1 and R3 are some empty sets. This is achieved
when yl → −∞ and yu → ∞. Another possibility is that
R1 and/or R3 are non-empty sets and f0 and f1 are some
scaled versions of each other in R1 and/or R3. In this case,

yl and yu will be finite. Referring to (11), this corresponds
to c1f0(y) = c3f1(y) and c2f0(y) = c4f1(y) for all y ∈ R1

and/or y ∈ R1. As a result the first two equations in (11) will
be the same and the latter two will differ only in (ε0, ε1) and
the integrals over (yl, yu). Therefore, we will not loose much
generality by considering R1 and R3 to be empty sets.
When yl → −∞ and yu →∞, the first two equations in (11)
reduce to

∫ ∞
−∞

(
λ0

√
f0(y) + λ1

√
f1(y)

)2
(λ0 + λ1 + 2 (µ0 + µ1 − 1))2

= 1 (23)

and the latter two equations reduce to∫ ∞
−∞

∣∣∣∣∣λ0f0(y) + λ1

√
f0(y)f1(y)

λ0 + λ1 + 2 (µ0 + µ1 − 1)

∣∣∣∣∣ = 1− ε0 (24)

and ∫ ∞
−∞

∣∣∣∣∣λ0

√
f0(y)f1(y) + λ1f1(y)

λ0 + λ1 + 2 (µ0 + µ1 − 1)

∣∣∣∣∣ = 1− ε1. (25)

The nominal likelihood ratio L = f1/f0 is assumed to be
monotone both in [6] and [5] due to mathematical tractabil-
ity. Without loss of generality, we further assume that
limy→∞ L(y) = ∞ and limy→−∞ L(y) = 0, which is
true for many pairs of nominal distributions on R, such as
mean shifted Gaussian distributions. If this assumption is not
true one needs to solve (7) w.r.t. the limits on L. With this
assumption, from (7) we obtain

µ0 =
−λ0

2
+ 1, µ1 =

−λ1

2
+ 1. (26)

Inserting (26) into (23), (24), and (25) we get

λ2
0 + λ2

1 + 2λ0λ1

∫ ∞
−∞

√
f0(y)f1(y)dy = 4, (27)

λ0 + λ1

∫ ∞
−∞

√
f0(y)f1(y)dy = 2(1− ε0), (28)

and
λ1 + λ0

∫ ∞
−∞

√
f0(y)f1(y)dy = 2(1− ε1), (29)

respectively. Let a =
∫∞
−∞

√
f0(y)f1(y)dy, x0 = (1 − ε0)

and x1 = (1 − ε1). Then, if we substitute (28) into (29)
through λ0, we obtain

λ1 =
2x1 − 2x0a

1− a2 . (30)

In a similar way, we substitute (28) into (27) and get

λ2
1 − λ2

0 + 4λ0x0 = 4 (31)

and substitute (29) into (27) and get

λ2
0 − λ2

1 + 4λ1x1 = 4. (32)

Summing (31) with (32) we obtain

λ0 =
2− λ1x1

x0
. (33)



In the final step, we first substitute (33) into (32) through λ0

and then substitute (30) to the outcome through λ1. Using
some algebra and noting that a is finite, this leads to(
1 + a2

(
−1 + x0

2)− x12) (1− a2 − x02 + 2ax0x1 − x12
)

= 0.
(34)

In fact, 0 < a ≤ 1 from the integral of a positive function
and Cauchy-Schwarz inequality. According to (34), whenever
the designer decides for a certain parameter, say ε0, the cor-
responding maximum ε1 can be determined via solving two
polynomial equations of order two. Having a closer look at
(34) suggests that the first two roots w.r.t. the first (left) mul-
tiplicand and one other root w.r.t. the second (right) multipli-
cand cannot be valid candidates. Because for all ε0 = ε1 ∈
[0, 1], the roots are a = ±1. Hence, one can obtain the valid
root as

a = (1− ε1)(1− ε0)−
√

(−2 + ε0)ε0(−2 + ε1)ε1, (35)

which is symmetric in ε0 and ε1 as expected.

4.2. Equal Parameters (ε0 = ε1)

If the robustness parameters are equal, we achieve the maxi-
mum robustness with

εmax = 1−
√

1 + a

2
. (36)

This can either be obtained by letting ε0 = ε1 in (35) or di-
rectly from (22) using the limiting conditions. Notice that
over all a ∈ [0, 1], εmax is bounded by 1−

√
2/2. For εmax =

0.104, we get a ≈ 0.606. This result is in agreement with the
asymptotic of the squared Hellinger distance in [6, Fig. 3.].

5. SIMULATIONS

The contributions w.r.t. Section 3 are theoretical. Basically,
without any further constraints, one needs to solve four non-
linear equations in four parameters. This has a complexity of
orderO(k4), where k indicates the running time. We reduced
this complexity to O(k2). When the symmetry condition is
satisfied and the robustness parameters are equal, ε0 = ε1, we
reduced the complexity from O(k2) to O(k). In the reduced
search space, as expected, the equations are more complicated
but the benefits are obvious.
With respect to the contributions in Section 4, we simulate
(35). More in details, for all a in (0, 1] we determine all pos-
sible pairs of (ε0, ε1) for which LFDs are the same. i.e., the
hypothesis overlap. Figure 1 illustrates a 3D plot of this ex-
periment. One can see that the non-zero values of a map to
a rotated, cropped cone like surface on the (ε0, ε1, a) space.
Except for the intersection curve of the cone-like surface with
the a = 0 plane, the rest of the points (ε0, ε1, a = 0) are un-
defined, meaning that such points do not exist, i.e., for those
points a minimax robust test cannot be designed.

0.0

0.5

1.0Ε0 0.0

0.5

1.0

Ε1

0.0

0.5

1.0

a

Fig. 1. All allowable pairs of maximum robustness parame-
ters, (ε0, ε1), w.r.t. all distances a ∈ (0, 1] .

6. CONCLUSIONS

In this paper, we have extended a previous work of the same
authors in two folds. First, we have reduced the number of
non-linear equations to be solved for the design of robust tests
from four to two in the general case. We have shown that the
equations can further be reduced to a single equation if the
symmetry assumption between the nominal density functions
hold. Second, we have derived the maximum achievable ro-
bustness parameters for the general case as well as when the
robustness parameters are the same. In the simulations, we
have noted that with the proposed formulations the computa-
tional complexity was reduced from O(k4) to O(k2) in the
general case and from O(k2) to O(k) for the special case.
We have also shown that the maximum robustness parame-
ters map to a cone like shape.
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