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ABSTRACT

Based on our previously proposed SPARsity and Clustering (SPARC)
regularization, we propose a robust variant of SPARC (RSPARC),
which is able to detect observations corrupted by sparse outliers.
The proposed RSPARC inherits the ability of SPARC to promote
group-sparsity, and combines that ability with robustness to outliers.
We propose algorithms of the alternating direction method of multi-
pliers (ADMM) family to solve several regularization formulations
involving SPARC regularization. Experiments show that RSPARC
is a competitive robust group-sparsity-inducing regularization for
regression.

Index Terms— Sparsity and clustering, group sparsity, Lasso,
elastic net.

1. INTRODUCTION

Consider the standard linear regression model, where the goal is to
estimate a vector of regression coefficients x ∈ Rn, from a vector of
responses y ∈ Rm, given by

y = Ax + e, (1)

where A ∈ Rm×n is the so-called design matrix (which is known)
and e ∈ Rm is the additive measurement noise. In most cases, the
solution of this type of problem (which is at the core of statistics, ma-
chine learning, and signal processing) requires regularization, that
is, the mathematical specification of properties that an estimate x̂ of
x should (or is known to) satisfy, in addition to providing a good
explanation to the observed responses y.

There are three standard formulations, depending on how the
regularizer φ(x) and the data-fidelity term f(x) are combined to
achieve a balance between the two goals [1]:

1. Tikhonov regularization:

min
x
f(x) + τ φ(x), (2)

2. Morozov regularization:

min
x
φ(x) s.t. f(x) ≤ ε (3)

3. Ivanov regularization:

min
x
f(x) s.t. φ(x) ≤ ε. (4)

Typically, f(x) = 1
2
‖y −Ax‖22 is the data-fidelity term (under a

white Gaussian noise assumption) and φ(x) is the regularizer that
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enforces certain properties on the target solution; finally, τ , ε, and ε
are non-negative parameters.

In the past decade, not only in signal processing (mainly due
to the advent of compressing sensing), but also in statistics and ma-
chine learning, a significant amount of work has been devoted to reg-
ularizers that encourage sparse solutions (e.g., the famous sparsity-
promoting LASSO regularizer φLASSO (x) = ‖x‖1). More recently,
much attention has been focused, not only on simple sparsity, but
also on structured/group sparsity [2], with the appearance of sev-
eral group-sparsity regularizers: group LASSO (gLASSO) [3], fused
LASSO (fLASSO) [4], elastic net (EN) [5], octagonal shrinkage and
clustering algorithm for regression (OSCAR) [6], and several others,
not listed here due to space limitations (see review in [2]). However,
gLASSO (and its many variants [2]) requires prior knowledge about
the group structure, which is a strong requirement in many applica-
tions, while fLASSO depends on a given order of variables; these
two classes of approaches are thus better suited to signal process-
ing applications than to variable selection and grouping in machine
learning problems, such as regression or classification (where the or-
der of the variables is often meaningless). In contrast, both EN and
OSCAR were proposed for regression problems and do not rely on
any ordering of the variables or knowledge about group structure.
The EN regularizer is defined as

φλ1,λ2
EN (x) = λ1 ‖x‖1 + λ2 ‖x‖22 ,

and the OSCAR regularizer (shown in [7] to outperform EN in fea-
ture grouping) is defined as

φλ1,λ2
OSCAR (x) = λ1 ‖x‖1 + λ2

∑
i<j

max {|xi| , |xj |} ,

where λ1 and λ2 are non-negative parameters [7]. The `1 norm
and the pairwise `∞ penalty in OSCAR simultaneously encourage
the components to be sparse and equal in magnitude, respectively.
However, it may happen that components with small magnitude that
should be shrunk to zero by the `1 norm are also penalized by the
pairwise `∞ term, which may prevent accurate grouping; moreover,
components with large magnitude that should simply be grouped by
the pairwise `∞ norm are also shrunk by the `1 norm (see Figure
1). To overcome these drawbacks, we have proposed the SPARsity-
and-Clustering (SPARC) regularizer [8], [9], where the pairwise `∞
penalty is applied only to the non-zero elements. The SPARC regu-
larizer is given by

φλ,KSPARC (x) = ιΣK (x) + λ
∑

i,j∈ΩK(x), i<j

max{|xi|, |xj |}, (5)

where ιC denotes the indicator of set C (i.e., ιC(x) = 0, if x ∈ C;
ιC(x) = +∞, if x 6∈ C), ΣK = {x : ‖x‖0 ≤ K} is the set of
K-sparse vectors, and ΩK(x) = supp(PΣK (x)) (where PΣK (x)
is the projection on ΣK , and supp(v) = {i : vi 6= 0}) is the set



Fig. 1. Demonstration of different regularizers

of indices of the K largest components of x (in magnitude). This
regularizer enforces K-sparsity and encourages the non-zeros to be
equal in magnitude.

However, the regularization schemes (2), (3), or (4), with any
of the above regularizers, are not able to address the case where the
response vector y is contaminated by outliers, which usually occur
infrequently and hence are sparse. One way that has been proposed
to deal with outliers is to add a sparse variable w to (1) [10], [11],
[12], [13], [14], [15], yielding

y = Ax + e + w. (6)

If yi is not an outlier, then wi = 0, whereas if yi is an outlier, then
wi can be viewed as the anomalous error. Following [13] and [15],
a robust variant of LASSO (referred to as RLASSO) can be defined
as

min
x,w

1
2
‖y −Ax−w‖22 + τ ‖w‖1 + λ‖x‖1 (7)

where τ and λ are non-negative parameters.
To the best of our knowledge, there are no methods that simulta-

neously encourage group sparsity and adaptively detect outliers. In
this paper, we propose a robust variant of our previously proposed
SPARC, which combines the group-sparsity-inducing capability of
SPARC and outlier-detection technique of RLASSO. We propose
algorithms of the ADMM family [16], more specifically variants of
the CSALSA algorithm [17], to solve several regularization formu-
lations involving SPARC regularization and sparse outlier detection,
and illustrate the performance of the proposed method on a bench-
mark regression problem.

2. PROPOSED FORMULATION AND APPROACH

2.1. Proposed Formulation

A robust version of SPARC (RSPARC) can be formulated using the
three regularization schemes mentioned above:

1. Tikhonov regularization (referred to as RSPARC-T)

min
x,w

1
2
‖y −Ax−w‖22 + τ1 φ

λ,K
SPARC (x) + τ2 ‖w‖1 (8)

2. Morozov regularization (referred to as RSPARC-M)

min
x,w
‖w‖1 + ε1φ

λ,K
SPARC (x) , s.t. ‖y −Ax−w‖2 ≤ ε2 (9)

3. Ivanov regularization (referred to as RSPARC-I)

min
x,w
‖y −Ax−w‖22 , s.t. φλ,KSPARC (x) ≤ ε1, ‖w‖1 ≤ ε2,

(10)

where τ1, τ2, ε1, ε2, ε1 and ε2 are non-negative parameters.

2.2. Key Ingredients

2.2.1. Proximity operator of SPARC regularizer

A key ingredient for algorithms to solve the problems (8) and (9) is
the proximity operator

prox
φ
λ,K
SPARC

(v) = arg min
x

(
φλ,KSPARC(x) +

1

2
‖x− v‖2

)
. (11)

The key observation that allows computing prox
φ
λ,K
SPARC

(v) is

v ∈ ΣK ⇒ φλ,KSPARC(v) = φ0,λ
OSCAR

(
vΩK(v)

)
, (12)

where vS ∈ R|S| is the sub-vector of v indexed by an index subset
S ⊆ {1, ..., p}. Combining this with properties of proximity opera-
tors and ideas from [18] allows showing (details are omitted here, for
lack of space) that z = prox

φ
λ,K
SPARC

(v) can be computed as follows:

zΩK(v) = prox
φ
0,λ
OSCAR

(vΩK(v)), zΩK(v) = 0 (13)

where 0 is a vector of zeros, ΩK(v) = {1, ..., p} \ ΩK(v), and
prox

φ
0,λ
OSCAR

can be calculated exactly or approximately by the group-
ing proximity operator and the approximate proximity operator, as
proposed in [19].

2.2.2. Projection onto SPARC ball

A central building block for solving (10) is the projection onto an
ε-radius SPARC ball,

Cλ,Kε =
{
x : φλ,KSPARC (x) ≤ ε

}
, (14)

which, by the definition of Euclidean projection, is given by

projCλ,Kε (v) = arg min
x∈Cλ,Kε

‖v − x‖22 . (15)

In the same vein as the previous sub-section, we can also com-
pute this projection using that of the OSCAR ball, which was ad-
dressed in our previous work [20]. Let the ε-radius OSCAR ball be
denoted by

Rλ1,λ2
ε =

{
x : φλ1,λ2

OSCAR (x) ≤ ε
}
.

According to (12), u = projCλ,Kε (v) can be computed as follows:

uΩK(v) = projRλ1,λ2ε
(vΩK(v)), uΩK(v) = 0 (16)

where
projRλ1,λ2ε

(v) = arg min
x∈Rλ1,λ2ε

‖v − x‖22 (17)

is a simply special case of the problems, with the sorted `1 ball con-
straint and a convex and continuously differentiable objective func-
tion, as addressed in [20], since Rλ1,λ2

ε is a simply special instance
of the sorted `1 ball and here the objective is ‖v − x‖22.



2.3. Proposed Algorithms

Naturally, solving (8), (9), and (10) can be addressed by alternating
minimization w.r.t x and w. In this section, we adopt constrained
split augmented Lagrangian shrinkage algorithm (CSALSA) [17]
to solve subproblems in the forms of (8), (9) and (10), termed
CSALSA-T, CSALSA-M and CSALSA-I, respectively.

2.3.1. Solving RSPARC-T

An algorithmic framework to solve (8) is given as follows.

Algorithm Framework to solve RSPARC-T
1. Input y,A,K, λ, τ1, τ2 and w0 = 0.
2. k = 1
3. repeat
4. xk+1 = CSALSA-Tx (y −wk,A,K, λ, τ1)
5. wk+1 = soft (y −Axk+1, τ2)
6. k ← k + 1
7. until some stopping criterion is satisfied.
8. Output xk and wk.

where “soft” is the well-known soft thresholding:

soft(z, τ) = sign(z)�max {|z| − τ, 0} .

In the algorithm above, CSALSA-Tx denotes the application of the
CSALSA algorithm to solve the subproblem (8) w.r.t x, as follows:

Algorithm CSALSA-Tx(z,A,K, λ, τ1)

1. Set k = 0, α > 0, x(1)
0 , x(2)

0 , d(1)
0 , d(2)

0 .
2. repeat
3. rk = AT

(
x

(1)
0 + d

(1)
0

)
+ x

(2)
0 + d

(2)
0

4. uk+1 =

(
ATA + I

)−1

rk

5. x
(1)
k+1 = prox 1

2
‖·−z‖22/α

(
Auk+1 − d

(1)
k

)
6. x

(2)
k+1 = prox

τ1φ
λ,K
SPARC/α

(
uk+1 − d

(2)
k

)
7. d

(1)
k+1 = d

(1)
k −Auk+1 + x

(1)
k+1

8. d
(2)
k+1 = d

(2)
k − uk+1 + x

(2)
k+1

9. k ← k + 1
10. until some stopping criterion is satisfied.
11. return x

(1)
k .

Line 5 of this algorithm computes the proximity operator of the func-
tion g(x) = 1

2α
‖x− z‖22, which has a simple closed-form solution

x
(1)
k+1 = 1

1+α

[
z + α

(
Auk+1 − d(1)

)]
,

while line 6 is given by (13).

2.3.2. Solving RSPARC-M

The subproblems of alternatively minimizing (9) w.r.t x and w are
solved by CSALSA-Mx and CSALSA-Mw, respectively. Before
proceeding, let us define

Sz
ε = {x : ‖x− z‖2 ≤ ε}, (18)

as the ε-radius Euclidean ball centered at z; then, the projecting of
some v onto Sz

ε is given by

projSz
ε

(v) = z +

{
ε v−z
‖v−z‖2

, if ‖v − z‖2 > ε,

v − z, if ‖v − z‖2 ≤ ε.
(19)

The proposed algorithmic framework is given by
Algorithm Framework to solve RSPARC-M
1. Input y,A,K, λ, ε1, ε2 and w0 = 0.
2. k = 1
3. repeat
4. xk+1 = CSALSA-Mx (y −wk,A,K, λ, ε1, ε2)
5. wk+1 = CSALSA-Mw (y −Axk+1, ε1)
6. k ← k + 1
7. until some stopping criterion is satisfied.
8. Output xk and wk.

where CSALSA-Mx is very similar to CSALSA-Tx, and amounts to
replacing τ1 of the latter by ε1 and replacing line 5 of the latter by

x
(1)
k+1 = projSz

ε2

(
Auk+1 − d

(1)
k

)
,

which can be computed by (19). Function CSALSA-Mw denotes the
application of the CSALSA algorithm to solve a LASSO problem in
the form of Morozov regularization w.r.t w, as follows:
Algorithm CSALSA-Mw(z, ε2)

1. Set k = 0, α > 0, w(1)
0 , w(2)

0 , d(1)
0 , d(2)

0 .
2. repeat

3. uk+1 = 1
2

(
x

(1)
0 + d

(1)
0 + x

(2)
0 + d

(2)
0

)
4. w

(1)
k+1 = projSz

ε2

(
uk+1 − d

(1)
k

)
5. w

(2)
k+1 = soft

(
uk+1 − d

(2)
k , 1/α

)
6. d

(1)
k+1 = d

(1)
k − uk+1 + w

(1)
k+1

7. d
(2)
k+1 = d

(2)
k − uk+1 + w

(2)
k+1

8. k ← k + 1
9. until some stopping criterion is satisfied.
10. return x

(1)
k .

Note how the CSALSA algorithm avoids the (hard) projection
on the ellipsoid in the constraint and uses a (simple) projection on
an Euclidean ball, thanks to the use of variable splitting [17].

2.3.3. Solving RSPARC-I

Recall that the ε-radius SPARC ball is denoted as Cλ,Kε (see (14)),
and let the ε-radius `1 ball be denoted by

Bε =
{
x : ‖x‖1 ≤ ε

}
.

The projection onto Bε (projBε2 ) is a well studied problem for which
there are efficient algorithms [21], [22], [23].
Algorithm Framework to solve RSPARC-I
1. Input y,A,K, λ, ε1, ε2 and w0 = 0.
2. k = 1
3. repeat
4. xk+1 = CSALSA-Ix (y −wk,A,K, λ, ε1)
5. wk+1 = projBε2 (y −Axk+1)

6. k ← k + 1
7. until some stopping criterion is satisfied.
8. Output xk and wk.

where CSALSA-Ix is equivalent to CSALSA-Tx, with line 6 re-
placed by

x
(2)
k+1 = projCλ,Kε1

(
Auk+1 − d

(2)
k

)
.

which can be computed by (16).
Note that, instead of CSALSA, we can use other state-of-the-art

algorithms such as FISTA [24], TwIST [25], or SpaRSA [26].



Fig. 2. Obtained parameters by different regularizations

3. EXPERIMENTS

In this section, we report experiments aimed at comparing the pro-
posed RSPARC with the LASSO, EN, OSCAR, SPARC, and, espe-
cially, RLASSO, all solved by the CSALSA algorithm [17]. Due
to space limitation, we only focus on RSPARC-T (see (8), note that
RSPARC-T, RSPARC-M and RSPARC-I are equivalent under mild
conditions). We employ the following three metrics defined on an
estimate x̂ of an original vector x:
• Mean absolute prediction error: MAPE = ‖A(x− x̂)‖1 /n;
• Mean squared prediction error: MSPE = ‖A(x− x̂)‖22 /n;
• Selection error rate: SER = ‖|sign(x)| − |sign(x̂)|‖0 /n;
• Degrees of freedom (DoF): the number of unique non-zero

values that the coefficients of x̂ take (in comparison with the
DoF of x).

We consider a regression problem (also used in [7]) of the form
(1), where the true parameter vector (which has DoF = 1) is

x = [3, · · · , 3︸ ︷︷ ︸
15

, 0, · · · , 0︸ ︷︷ ︸
25

]T (20)

and the design matrix A is generated as follows:

ai = z1 + εxi , z1 ∼ N (0, 1), i = 1, . . . , 5;

ai = z2 + εxi , z2 ∼ N (0, 1), i = 6, . . . , 10;

ai = z3 + εxi , z3 ∼ N (0, 1), i = 11, . . . , 15;

ai ∼ N (0, 1), i = 16, . . . , 40,

where εxi are i.i.d. N (0, 0.16), and A = [a1,a2, ...,a40]T is further
normalized. Finally, the noise e is i.i.d. N (0, 0.01).

Let r (0 ≤ r < 1) be corruption level and ŷ the corrupted (with
outliers) version of y = Ax + e, that is,

ŷi =

{
100 di with probability r
yi with probability 1− r (21)

where d ∼ N (0, I). We consider r = 0 and r = 0.05 (referred
to as 5%). The number of samples for training, cross validation and
testing are 40, 40 and 200, respectively. The results are shown in
Table 1 (averaged over 50 repetitions) and in Figure 4. The outliers
detected in one of the examples are shown in Figure 3.

From Table 1 and Figure 2, we can easily see that when r = 0,
the SPARC (RSPARC reduces to SPARC) performs the best; when

Fig. 3. Corruption-free and corrupted responses, and detected
wRLASSO and wRSPARC obtained by RLASSO and RSPARC, respec-
tively.

r = 5%, the non-robustified regularizers (LASSO, EN, OSCAR,
SPARC) totally fail, while the RSPARC performs very well, in this
problem much better than the RLASSO, although both of are able to
correctly detect the corrupted responses (see Figure 3).

Finally, we compare the performances of RSPARC and RLASSO
under different corruption levels. Let us define success when
‖x̂− x‖ ≤ 10, where x̂ is an estimate of x, and keep the setup of
above experiments unchanged. We run the RSPARC and RLASSO
50 times for each corruption level, obtaining the success rates and
the mean DoF values plotted in Figure 4 (recall that in this problem,
the DoF of x is 1); we can see that the RSPARC clearly outperforms
RLASSO on this example.

Fig. 4. Comparison on the performances of RSPARC and RLASSO
under different corruption levels.

4. CONCLUSIONS

We have proposed a robust variant of our previously proposed SPAR-
sity and Clustering regularization (RSPARC) for regression. We
have shown that the proposed RSPARC is able to strongly and accu-
rately promote group-sparsity and be robust to outliers. Future work
will involve considering robust variants of SPARC for classification.
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