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ABSTRACT
Recent works have introduced powerful 1-step geolocation
methods in comparison with traditional, and suboptimal,
2-steps methods. As these 1-step methods directly and
simultaneously work on the observations of the whole ar-
ray, there is now an important issue concerning the possible
array-broadband effect. To counteract that effect, the recent
methods introduce an imperfect narrowband decomposition,
by the way of a filter bank or, equivalently, by a structured
multidimensional modelization. The purpose of this work
is to study the residual array-broadband effect on the 1-step
algorithms performances. The study will compare two 1-step
methods by the way of the bias and the ambiguity problem,
giving some tools for operational design.

Index Terms— Geolocation - Narrowband - Broadband -
Parameter bias - Error on covariance matrix - LOST - DPD

1. INTRODUCTION

The discussed problem concerns the geolocation of radiating
sources using remote multi-sensors stations (each one satisfy-
ing the narrowband hypothesis, commonly exploited in array
processing). The transmitters (or sources) locations are tra-
ditionally estimated in 2-steps with conventional algorithms.
For instance, the sources Angles of Arrivals (AoAs) are es-
timated on each station in the first step and in a second step
the location of the sources are computed from the AoAs (eg.
triangulation) [1]. Recently, new 1-step methods [2], [3] have
been introduced in order to improve the performances of con-
ventional algorithms. These algorithms are based on a direct
estimation of the geographical coordinates of the transmitters
thanks to high resolution methods assuming the narrowband
signals hypothesis on the array of all the stations. For this
reason, A.Amar and A.J.Weiss introduced the DPD (Direct
Position Determination) algorithm [2] which is based on a
frequency decomposition in K narrow sub-band with a filter
bank and J.Bosse et al. the LOST (LOcalization by Space-
Time) algorithm [3] with an equivalent space-time observa-
tion with K shifts in order to exploit more accurately the
space-frequency modeling. More precisely, a signal of band-
width B is processed as multiple signals of bandwidth B

K .

These algorithms (LOST and DPD) assume that the signal of
bandwidth B

K is narrowband. However, if the value K is not
sufficiently large in order to reduce the computation cost, the
signals of bandwidth B

K do not verify the narrowband hypoth-
esis. In [7], the localization performances of the DPD algo-
rithm have been evaluated when the narrowband hypothesis
is not verified in each sub-channel of bandwidth B

K .
The purpose of this paper is to evaluate the performances

of the LOST algorithm when the narrowband hypothesis is
not verified for the sub-band of bandwidth B

K . More pre-
cisely, the purpose is to give a closed form expression of the
geolocation bias when the covariance matrix of the received
signals is perfectly known. In order to do this, we give in a
first time a closed form expression of the covariance matrix
error due to narrowband hypothesis and in a second time we
give a link between the bias and the error on the covariance
matrix. According to [7], we are able to compare the theo-
retical performances of the LOST and DPD algorithms in a
broadband environment.

Notations: A or (aij)1≤i≤I,1≤j≤J ∀(I, J) ∈ N2
∗ is a

matrix of dimension I × J , a or (ai)1≤i≤I ∀I ∈ N∗ is a
column vector of dimension I , II is the identity matrix of
dimension I , a or A is a scalar, (·)H is the Hermitian of
a matrix or a vector, (·)T is the transpose of a matrix or
vector, (·)∗ is the conjugate of a scalar, E[·] is mathemat-
ical expectation, ⊗ is the tensor product, [[a, b]] is the set
defined by {x ∈ Z| a ≤ x ≤ b,∀(a, b) ∈ Z2

}
, for all com-

mutative ring or semiring K we have K∗ = K\{0} and
K+ = {x ∈ K : 0 ≤ x < +∞}.

2. SIGNAL MODEL AND PROBLEM
FORMULATION

2.1. Assumptions about the system
The global geolocation system is composed of L remote sta-
tions (or bases). Each of these bases are composed of Ml

sensors for l ∈ [[1, L]]. Thus, the system has M sensors
(
∑L
l=1Ml = M ). In this paper, we consider Q uncorrelated

transmitters denoted sq(t) for all q ∈ [[1, Q]] at location pq .
These sources stem from the stationary and spectrally white
signal eq(t) where the q-th signal is filtered by a shaping filter



named hq(t) (e.g. Nyquist):

sq(t) = (eq ∗ hq) (t)× e2iπf0q t (1)

Then, the auto-correlation function is:

rq(τ) = E
[
sq(t)s

∗
q(t− τ)

]
(2)

= E
[
|eq(t)|2

]
e2iπf0q τ

∫
R
hq(t)h

∗
q(t− τ) dt (3)

where E
[
|eq(t)|2

]
= σ2

sq . The narrowband hypothesis is ver-
ified on the global system when:

max
q∈[[1,Q]],(l,j)∈[[1,L]]2

|τl(pq)− τj(pq)| ×Bq � 1 (4)

where τl(pq) is the time of arrival of the q-th source to the l-
th base and Bq the bandwidth of the q-th source. The receiver
bandwidth of each station is B = Fe where Fe is the sam-
pling frequency of all the bases (afterwards we note Te = 1

Fe

the sampling time). Moreover, all the bases are perfectly syn-
chronous with each other.

Finally, the noise at the output of each base station is sta-
tionary, white, zero mean and with a variance σ2. In Fig.1
the propagation of one source to the remote stations is repre-
sented.

Fig. 1. System diagram

2.2. Signal modeling
The new 1-step algorithms [2], [3] use a global observation
composed by the signals at the output of each base. The asso-
ciated concatenated vector is:

y(t) =
[
xT1 (t), ...,xTl (t), ...,xTL(t)

]T
(5)

In the Line of Sight (LoS) assumption, the M sensors of
the global system only observe the direct paths of each source.
Then, the output of the l-th station is:

xl(t) =

Q∑
q=1

ρl,qal(θl(pq))sq(t− τl(pq)) + nl(t) (6)

where ρl,q, al(pq), θl(pq) and τl(pq) are the complex atten-
uation, the steering vector, the Angle of Arrival (AoA) and
the Time of Arrival (ToA) respectively associated to the q-th
source and the l-th base. In the following of the paper, the
complex attenuations ρl,q are a priori know.

3. CENTRALIZED METHODS

3.1. DPD algorithm

In the DPD (Direct Position Determination) algorithm [2],
the signals at the output of the bases are filtered by a filter
bank composed of K filters. Then, the signal is decomposed
in K sub-signals of bandwidth B

K where the narrowband as-
sumption is assumed on all the stations. If we note xl,k(t)
and sq,k(t) the received signal and the transmitted signal at
the output of the k-th filter of the filter bank respectively, the
model of the received signals is:

yk(t) =

x1,k(t)
...

xL,k(t)

 ≈ Q∑
q=1

u(pq, fk)sq,k(t) + nk(t) (7)

where the vector nk(t) is the noise filtered by the k-th filter
of the filter bank and

u(pq, fk) =
(
ρl,qal(pq)e

−2iπfkτl(pq)
)

1≤l≤L
(8)

The signal sq,k(t) of bandwidth B
K is assumed to be nar-

rowband, consequently:

sq,k(t− τ) ≈ sq,k(t)e−2iπfkτ (9)

Then, the covariance matrices R̂k ∀k ∈ [[1,K]] of the obser-
vations yk(t) are estimated at the output of each filter of the
filter bank. Thus, the DPD algorithm estimates the sources
location p̂q by searching the zeros of a criterion which is an
incoherent sum of the MUSIC criteria in each sub-band of
covariance matrix R̂k [2].

We studied in [7] the influence of the approximation of the
narrowband assumption on the signals sq,k(t) for the DPD
algorithm in order to estimate the sources position. In the
remainder of this paper, we focus on a second 1-step approach
recently introduced: the LOST algorithm [3].

3.2. LOST algorithm
The LOST (LOcalization by Space-Time) algorithm [3] uses
the following space-time observation:

yTLOST (t) = [y(t),y(t− Tshift), ...,y(t− (K − 1)Tshift)] (10)

where y(t) is, according to Eq.(5), the observation at the out-
put of the global array and Tshift is the time delay (usually
Tshift = Te). According to Eq.(7), the relation between
y(t) and yk(t) is y(t) =

∑K
k=1 yk(t). We will now con-

sider that the decomposition into narrowband signals adapts
to each signals. In presence of K temporal delay, the q-th
source can be decomposed into Kq narrowband sub-signals
with 1 ≤ Kq ≤ K ∀q ∈ [[1, Q]]. From the DPD model (e.g.
Eq.(7)) we have:

y(t) ≈
Q∑
q=1

Kq∑
k=1

u(pq, fq,k)sq,k(t) + n(t) (11)



In the case of the k-th delay of the space-time process, the
Eq.(11) becomes:

y(t− (k − 1)Tshift) ≈
Q∑
q=1

Kq∑
k=1

u(pq, fq,k)c(fq,k)k−1 ×

sq,k(t)+n(t) (12)

with c(f) = e−2iπfTshift . Then the space-time observation
is, according to Eq.(7) and Eq.(12), given by:

yLOST (t) ≈ yNBLOST (t) =

Q∑
q=1

Kq∑
k=1

v(pq, fq,k)sq,k(t) + n(t) (13)

where the superscript or subscript NB means narrowband
signals and

v (pq, f) = c(f)⊗ u(pq, fq,k) (14)

with c(f) =
(
c(f)k−1

)
1≤k≤K

. We decomposed the Q sig-

nals in
∑Q
q=1Kq sub-signals respecting the narrowband as-

sumption around the frequencies fq,k ∀k ∈ [[1,K]]. Accord-
ing to Eq.(13), with the narrowband hypothesis, the covari-
ance matrix of the space-time observations is:

RNB = E
[
yNBLOST (t)

(
yNBLOST

)H
(t)

]
(15)

=

Q∑
q=1

Kq∑
k=1

E
[
|sq,k(t)|2

]
v (pq, fq,k) vH (pq, fq,k) +

σ2IM×K (16)

where E
[
|sq,k(t)|2

]
is the power of the k-th sub-signal.

Thus, the signal subspace of RNB is of rank
∑Q
q=1Kq

and is spanned by the vectors v (pq, fq,k). The LOST algo-
rithm exploits this property and extracts the projector Π⊥NB
onto the noise subspace from the covariance matrix RNB [3],
as in high resolution methods like MUSIC [4]. The couples
of parameters (pq, fq,k) can then be estimated by searching
the zeros of the criterion:

JLOST (p, f) =
vH (p, f) Π⊥NBv (p, f)

vH (p, f) v (p, f)
(17)

Moreover, in a narrowband context, the estimated q-th
source location is asymptotically equal to the true source lo-
cation.

In the next section we analyze the case of small values of
K where the sub-signals sq,k(t) potentially do not respect the
narrowband assumption.

4. ANALYSIS IN BROADBAND CONTEXT

In this section, we will analyze the performances of LOST
when the narrowband hypothesis is not verified for the sub-
signal sq,k(t). For that, it is necessary to give the expression
of the theoretical covariance matrix, named R, when the nar-
rowband hypothesis is not assumed.

4.1. Problem formulation
This part will allow us to have the theoretical criterion of
LOST (in the broadband context) and to observe the bias.
Therefore, the approximation made in Eq.(12) is no longer
verified. Consequently, according to Eq.(6), the LOST obser-
vation is:

yLOST (t) =

Q∑
q=1

V(pq)sq,K(t) + n(t) (18)

with

V(pq) = IK ⊗

ρ1,qa1(pq) · · · 0M1×1

...
. . .

...
0ML×1 · · · ρL,qaL(pq)

 (19)

and sq,K(t) =
(
sq(t− (k−1)Tshift)

)
1≤k≤K

where sq(t) =(
sq(t− τl(pq))

)
1≤l≤L

. Then, the theoretical broadband co-

variance matrix can be written as follows:

R = E
[
yLOST (t)yHLOST (t)

]
(20)

=

Q∑
q=1

V(pq)RsqVH(pq) + σ2IM×K (21)

where the matrix Rsq is a Toeplitz block matrix defined by:

Rsq = E
[
sq,K(t)sHq,K(t)

]
(22)

=

 Sq(0) · · · SHq ((K − 1)Tshift)
...

. . .
...

Sq((K − 1)Tshift) · · · Sq(0)

(23)

According to Eq.(3), the matrix Sq(µ) is expressed as fol-
lows:

Sq(µ) =

 rq(µ) · · · rq(µ+ ∆τ1,L(pq))
...

. . .
...

rq(µ−∆τ1,L(pq)) · · · rq(µ)

 (24)

with ∆τl,v is the Time Differential of Arrival (TDoA) be-
tween the l-th and v-th bases and the q-th source. In the re-
mainder of this paper the expression of the covariance matrix
in broadband assumption is used to establish the geolocation
bias.

4.2. Bias closed form expression
A closed form expression of the geolocation bias ∆pq =
pq − pBBq is given in this section where pBBq (BB means
broadband) is the estimation of the location of the q-th source
when the narrowband assumption is assumed in the LOST al-
gorithm. More precisely, the narrowband hypothesis assumes
that the covariance matrix is R = RNB (e.g. Eq.(21) and
Eq.(16)) and, thus, the associated signal subspace is spanned
by the steering vectors v(pq, fq,k). The LOST algorithm is
then disturb by the covariance matrix error ∆R = R−RNB .



According to [5], it is shown that the first-order relationship
between Π⊥ and ∆R is the following:

Π⊥ = Π⊥NB −∆Π⊥ (25)

with

Π⊥ ≈ Π⊥NB∆RR+
NB + R+

NB∆RΠ⊥NB (26)

where (·)+ is the Moore-Penrose pseudoinverse. The expres-
sion of the bias on the parameters is given by the 2nd order
approximation:

∆pq ≈ −H̃−1(JLOST (pq|fq,k))∇JLOST (pq|fq,k) (27)

where ∇ is the gradient and H̃ is the approximation of
the Hessian matrix. If we define the gradient by ∇(p) =(

∂
∂px

, ∂
∂px

)T
, we have for each element of the gradient in the

LOST algorithm:

∂JLOST (pq|fq,k)

∂pi
= 2<

{
∂vH(pq, fq,k)

∂pi
Π⊥v(pq, fq,k)

}
(28)

with i ∈ {x, y} and the approximation of the Hessian is:

H̃(p) =

(
H̃11(px) H̃12(px, py)

H̃21(px, py) H̃22(px, py)

)
(29)

where:

H̃ij (JLOST (pq|fq,k)) = 2<
{
∂vH(pq, fq,k)

∂pi
Π⊥×

∂v(pq, fq,k)

∂pj

}
(30)

with (i, j) ∈ {x, y}2. Using the equation (25) of the projec-
tor and performing a first order Taylor expansion of the bias
∆pq with respect to the matrix ∆R [6], the expressions of
∂JLOST (pq|fq,k)

∂pi
and H̃ij(JLOST (pq|fk)) ∀(i, j) ∈ {x, y}2

are:
∂JLOST (pq|fq,k)

∂pi
≈ −2<

{
∂vH (pq,fq,k)

∂pi
Π⊥NB×

∆RR+
NBv(pq, fq,k)

}
H̃ij(JLOST (p|fq,k)) ≈ 2<

{
∂vH (pq,fq,k)

∂pi
Π⊥NB

∂v(pq,fq,k)

∂pj

}(31)

5. SIMULATIONS

In this section, we will first analyze the influence of the broad-
band effect on the bias of the LOST algorithm and observe
the influence of the number of spatio-temporal delays (K).
Then, in a second step, we will compare the LOST and DPD
algorithms and analyze the different behaviors of these two
algorithms.

5.1. Visualization of the bias
We here consider two cases: the first case permits to observe
the bias of the estimated position of a single source (Q = 1),
and the second considers the bi-source (Q = 2) case.

In both cases we will consider a zero noise (σ2 = 0), the
goal being to eliminate any disturbance other than the broad-
band effect. We have two bases (L = 2). In a cartesian co-
ordinate system, we place the first base at (−400m,−400m),
and the second at (400m,−400m). These bases are composed
of four sensors where three are in a circular formation around
a fourth in the center. The bases radius is 0.5m. The two
bases are perfectly synchronized with the sampling frequency
Fe = 500kHz.

In the first case, we will move the source along the ab-
scissa axis with the position (d,0) with d ∈ R+. We con-
sider a source with a carrier frequency f0 = 900MHz, with
a Nyquist shaping filter and a bandwidth B1 = 426KHz. To
observe the source lobe relatively to the secondary lobes, we
plot the bias and the lobes level with respect to the Time-
Bandwidth (TB) product defined as TB = B1×∆D

c , where c
is the light speed in vacuum and ∆D is the differential dis-
tance between the bases and the source. In order to guaranty
the narrowband effect, one must have TB � 1 and, thanks
to the triangular inequality, we have ∆D ≤ a, with a the dis-
tance between the two bases. We note that, in this context, for
TB → B1×a

c ≈ 1.14, we have d→∞.
We note that for the single-source case we have no bias,

which can be observed in Fig2 (blue square).

Fig. 2. Comparison 1 source / 2 sources

In the second case, we add a second source position
(d,−100m). We will always consider the first source as the
reference for the computation of the position. One sees very
clearly that the more d increases the more the resolution
limits on the bases are reached. This is a second effect of
broadband. Here we see (always on Fig.2) that we have an
emergence of the bias (red triangle).

We will now observe the influence of the number of
spatio-temporal delays (K) on the bias and the robustness
through the difference between the source lobe and the low-
est secondary lobe. This value is negative or null if there
is an ambiguity. It may be observed from Fig.3 that more
K is greater more the bias due to the broadband effect is
low. We see that for 7 temporal shifts (red triangle), the bias
is very small compared to 2 temporal shifts (blue square).
However it is interesting to note that the number of spatio-
temporal delays does not affect the robustness of the system



to ambiguities.

Fig. 3. Visualization of the bias and lobes
Finally, we check the validity of the closed form expres-

sion of the bias with the true bias. We can see in Fig.4 that
the closed form expression of the bias (blue square) is very
close to the real bias (red triangle). The more TB increases,
the more a gap increases between these two curves. This is
mainly due to the approximations made in Sec.4.2.

Fig. 4. Theoretical bias for K = 3

5.2. Comparison between the DPD and LOST bias
In this final section we will compare the performances of the
DPD and LOST algorithms using the closed form expression
of the bias and the robustness to ambiguities. The sensitivity
of the DPD algorithm to the broadband effect has been studied
in [7]. We take a number of spatio-temporal delays (K = 3)
equal to the number of filters in the filter bank of the DPD
algorithm (also called K). Similarly, the sources context is
identical to the second case previously discussed (one source
at the position (d,0) and the second at (d,−100m)).

Looking at Fig.5, we immediately observe that the DPD
algorithm (red triangle) has a source position error higher than
in the LOST algorithm (blue square). The parametric bias
due to the broadband effect is consequently more sensitive to
the DPD than to the LOST algorithm. However, we can see
that the robustness to ambiguities is much better for the DPD
algorithm than for the LOST algorithm.

6. CONCLUSION

In this paper a closed form expression of the geolocation bias
of LOST is establish when the narrowband hypothesis is not

Fig. 5. Visualization of the bias and lobes, LOST vs. DPD

verified in each sub-band of bandwidth B
K . The simulations

show the validity of this bias expression. As a byproduct
we show how the geolocation bias is depending on the sig-
nal auto-correlation function and then on the signals modula-
tion. In addition, we show through simulations that the bias
of LOST is decreasing when K increases and that K does
not noticeably impact on the robustness to ambiguities. Thus,
the influence of the number K (spatio-temporal delays) on
the performances of the LOST algorithm is then established.
As the bias decreases and the computation cost increases with
respect to K, this result gives us a tool to optimize the com-
putation cost with respect to the LOST accuracy.

Although the DPD algorithm is more robust to ambigu-
ities than LOST in a narrowband context, we show that the
bias of LOST is less significant than the DPD algorithm.
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