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ABSTRACT

This paper addresses the problem of distant speech recognition in
reverberant noisy conditions employing a microphone array. We
present a prototype system that can segment the utterances in real-
time and generate robust ASR results off-line. The segmentation
is carried out by a voice activity detector based on deep belief net-
works, the speaker localization by a position-pitch plane, and the
enhancement by a novel combination of convex optimized beam-
forming and vector Taylor series compensation. All of the compo-
nents are compared with other similar ones and justified in terms
of word accuracy on a proposed database which simulates distant
speech recognition in a home environment.

Index Terms— distant speech recognition; deep belief net-
work voice activity detection; PoPi speaker localization; convex-
optimized beamforming; vector Taylor series compensation; rever-
berant and noisy environment; natural mixing; German database.

1. INTRODUCTION

The distant interaction of a speaker with a dialogue system, which
controls a home automation system, is a difficult challenge because
of many reasons: the wake-up or attention of the system (distinc-
tion between human-human conversations and human-system com-
mands), the change of the user accent in automatic speech recogni-
tion (ASR), and the degradation of the speech signal due to back-
ground noise or reverberation. Different challenges such as the re-
cent REVERB [1] and projects such as CHIL, CHiME [2] and the
current Distant-speech Interaction for Robust Home Applications
(DIRHA, http://dirha.fbk.eu) have been introduced to solve this chal-
lenge.

To address the degradation problem, we propose the framework
depicted in Fig. 1 which consists of state-of-the-art components.
First, we acquire the sound signal with a 6-element star-shaped mi-
crophone array and segment it in multichannel utterances by means
of a voice activity detector block based on deep belief networks
(VAD-DBN). It is important to note that this block is the only one
which processes the signal in real-time (i.e., the VAD output is pro-
vided, at least, as fast as the input samples) and that all the following
blocks work off-line. This is the reason of situating at first place
the VAD (the following blocks have a high computational cost and
they can only process short segments of the whole temporal signal).
Second, speaker localization (SLoc) based on the position and pitch
(PoPi) plane estimates the spatial position of the multichannel utter-
ance. Third, a convex-optimized beamformer (CVX-BF) provides
a monaural enhanced signal which is compensated by vector Taylor
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Fig. 1. Block diagram of the proposed system for distant speech
recognition which consists of a 6-element microphone array, a
voice activity detector based on deep belief networks (DBN-VAD),
a speaker localizer based on the position and pitch plane (PoPi-
SLoc), a convex-optimized beamformer (CVX-BF), a vector Taylor
series enhancement (VTS-Enh) and an automatic speech recognizer
(ASR).

series ( VTS). Finally, we send the enhanced segment to an the ASR
system.

In the literature we can find some proposals of similar systems
[3, 4] but their applications are for games and meeting transcriptions
respectively. This framework is an improved version of both, [5] and
[6], because we do not use any true information such as the utterance
segmentation and the speaker localization. The novelty of the paper
is the analysis of the components to produce a positive synergy or
cooperation. In order to do so, this paper also introduces a multi-
channel speech database which contains embedded clean signals of
German commands for home automation control, contaminated with
real room impulse responses and mixed in a ‘natural’ way [2] with
real noise.

The paper is structured as follows: Section 2 presents the
database and the ASR configuration. Section 3 justifies, mainly in
terms of word accuracy (WAcc), the selection of the different com-
ponents of the proposed system. Section 4 analyses in details the
results and finally, section 5 summarizes the most important ideas
presented in this paper together with future work.

2. EXPERIMENTAL FRAMEWORK

2.1. Embedded-DIRHA German Database

2.1.1. Description of the simulated environment

The proposed database, which we will call Embedded-DIRHA,
refers to the 6-element star-shaped microphone array (1 center mi-
crophone and 5 on a pentagon on the same plane, with distance of 0.3
m to the center), placed on the ceiling of the living room of the ITEA
apartment used by Fondazione Bruno Kessler (FBK) for the DIRHA



Fig. 2. Living room of the ITEA apartment of Fondazione Bruno
Kessler (FBK) with the microphone array at the center and the 12
speaker positions employed in this work [provided by FBK].

project [7] (see Fig. 2). The selection of the geometry of this array
is based on the trade-off between obtaining a uniform directivity
and localization accuracy in any room position and having a small
number of microphones. For the controllability of the experiments,
the 12 speaker position-directions circled in Fig. 2 oriented to the
center microphone are used. This provides us 72 (12 positions* 6
microphones) different impulse responses. The 2-D size of the room
is 4.5x4.8 m and the average distance of these positions (1.5 m over
the floor) to the center microphone is 2.4 m (enough to work with
the wave plane assumption [8], and to consider distant speech recog-
nition). The averaged reverberation time of the room is t60=0.8 sec
which is even higher than in REVERB challenge [1]. We have also
3 h of house noises (TV, washing-machine, children,...) recorded by
this microphone array [7].

2.1.2. Test set

The database has a sampling frequency of 16 kHz and is divided
into a test, training, and development set. The test set is furthermore
divided in other three SNR sets: Clean, 10dB and 0dB. The last SNR
(0dB) is very low for home environments ([1]) but we consider it to
delimit better the performance of the proposed system. The Clean set
consists of 57 6-channel-signals (from the star-shaped microphone
array) of 45 sec duration on average. We call these signal clean
embedded signals because they have concatenated or embedded 7
isolated speech utterances on average, separated randomly 0.5 to 5
sec and produced at different random positions by the same speaker.
We use the impulse responses of Sec. 2.1.1 and 19 different speakers
(10 male and 9 female) which gives 3 clean embedded signals per
speaker. The 10dB and 0dB sets are obtained by natural mixing (Sec.
6.1) of the clean embedded signals with the 3 h of noise. We call this

mix the embedded noisy signal. The isolated speech utterances are
German read and spontaneous commands, and keywords of different
lengths: ’Open the door’, ’Turn on the bathroom fan and set it for
thirty minutes’, ’System!’, .. extracted from the GRASS corpus [9].
In one SNR set we find 380 different isolated utterances and 296
different words.

2.1.3. Training and development sets

The clean training set contains 610 clean embedded signals (5046
isolated utterances) corresponding to 55 different-gender speak-
ers: the above mentioned 19 GRASS [9] speakers (with different
commands, keywords, and read sentences than test set) and 36
PHONDAT-1 [10] speakers. We mix two databases to do our recog-
nition more robust to the speaker variation. To reduce the reverber-
ation mismatch with the test set we employ the same 12 speaker
positions. We also derive a multicondition training set by means of
embedded noisy signals contaminated randomly at SNRs (Clean,
10dB and 0dB). The development set has 228 embedded signals
corresponding to the 19 GRASS speakers of the multicondition set.

2.2. ASR system

The parameters of both, the front-end and the back-end, have been
derived from the HTK-based recognizer of [11]. The front-end takes
the enhanced signal and obtains mel frequency cepstrum coefficients
(MFCCs) using: 16 kHz sampling frequency, frame shift and length
of 10 and 32 ms, 1024 frequency bins, 26 mel channels and 13 cep-
stral coefficients with cepstral mean normalization. Delta and delta-
delta features are also appended, obtaining a final feature vector with
39 components. The back-end is appropriate for our medium vocab-
ulary size (296 words, Sec. 2.1.2). It employs a transcription of the
training corpus based on 34 monophones (clustered from a previ-
ous 44 SAMPA-monophone transcription) to train triphone-HMMs.
Each triphone is modeled by a HMM of 3 emitting states and 8 Gaus-
sians/state. Although in the future we plan that the dialogue system
selects the language model, now to avoid the difficulty of creating
a deterministic grammar (due to the utterance diversity, Sec. 2.1.2)
and because here we are more focused on the previous blocks to the
ASR, we use a bigram trained on the test transcriptions. Note that the
HMMs are trained with the center microphone signal of the training
set without any enhancement (beamforming and VTS).

3. SYSTEM BLOCK DIAGRAM

3.1. Deep belief network voice activity detector

We propose the use of a voiced activity detector based on a deep be-
lief network (DBN-VAD) because [12] shows that it performs better
than many other VADs. Furthermore, due to its low computational
cost in the feature extraction and decision stage, we can implement it
in real-time. The implementation used here has a real-time of x1.08
[13]. The DBN-VAD takes the center microphone signal and pro-
vides the speech/non-speech decision for each frame from a feature
vector. To train it we use the development set of Sec. 2.1.3 that
provides us with around 1.400.000 feature vectors with their corre-
sponding labels (derived from an energy-based VAD applied to the
Clean set). We employ the same parameters as in Table II of [12]
with a momentum of 0.9.

Unlike [12] each of our feature vectors has 282 coefficients (1-
pitch; 26-Log-Mel-Spectrum and 13-MFCC with smooth time win-
dows of 1, 9 and 17 frames centered around the frame under analysis;



12-LPC; 17-RASTA; and 135-AMS (Amplitude Modulation Spec-
trum)). These coefficients are completely derived from the pitch
(from a simple extractor based on the maximum of the autocorre-
lation, a noise energy threshold equal to the amplitude mean, and a
median smoothing to remove octave errors) and from the Log-Mel-
Spectrum (Sec. 2.2). The final VAD decision is passed through a
dilation morphological filter of 141 frames of total length (i.e. we
grow in 70 frames the speech detection at the edges) to obtain the
segmented utterance.

The averaged frame classification accuracy over the Clean,
10dB and 0dB test sets for different VADs is: True-VAD 100.00,
DBN-VAD 84.39, the above mentioned energy-based-VAD 80.95,
Extended-AFE-VAD [14] 80.30 and Extended-FE-VAD [15] 63.53
%. The corresponding WAcc (Sec. 6.2 to understand how to evaluate
a VAD in terms of WAcc) results without any further enhancement
are: 58.98, 57.39, 56.57, 55.24 and 47.03 %. These results clearly
justify the use of the DBN-VAD.

3.2. Position-pitch speaker localizer

At each frame, we obtain a Position-Pitch (PoPi) plane [16] by
means of the cross-correlation (cc) between the signal of the center
microphone and the signal of one of the pentagon microphones. The
PoPi value at one (pitch,angle) point is obtained by averaging the cc
values which delay correspond to this point. The final PoPi plane
for one frame is the average of the five PoPi planes of the pentagon.
If we do it for all of the frames of the segmented utterance, we
derive a PoPi function PoPi(α, f0, t) that indicates the energy at a
determined angle position α, pitch frequency f0 and time frame t. In
our case α = 0, 1, ..359◦, f0 = 80, 81, ...220Hz and t = 1, 2, ..fn
(fn: frame number of the segmented utterance). If we consider that
the speaker does not change his position during an utterance and
for the sake of the simplicity, that the noise has a non-defined pitch
along the utterance, we can estimate its position as the maximum of
the marginalized PoPi function across the pitch and the time:

α̂speaker = argmax
α

[

nf∑
t=1

220∑
f0=80

PoPi(α, f0, t)] (1)

where α̂speaker is the estimated azimuth angle of the speaker relative
to the center microphone. The elevation is not estimated because we
assume always 1.5 m over the floor (Sec. 2.1.1). A similar marginal-
ized approach is used to localize the speaker by means of the SrpPhat
function [17]. The averaged accuracy of the speaker angle estimation
(Sec. 6.3) over the test set for different speaker localizers when we
use the true utterance segmentation is: True-SLoc 100, PoPi-SLoc
95.82 and SrpPhat-SLoc 93.61 %. The angle accuracy when we use
the DBN-VAD segmentation is respectively: 99.93, 95.20 and 92.97
%. The corresponding WAcc when we use these positions to en-
hance the signal with the CVX-BF (Sec. 3.3) is: 66.11, 65.37 and
65.65 for the true segmentation; 64.04, 63.54 and 63.79 % for the
DBN-VAD segmentation. Although the SrpPhat gives a bit better
result in WAcc than the PoPi-SLoc, we choose the latter because it
has more accuracy, has a bit lower computational cost and fits better
in our future work (Sec. 5).

3.3. Convex optimized beamformer

The main difference between the convex optimized (CVX) [6, 5]
and the delay and sum (DS) [8] beamforming is that the former one
can better approximates the desired beampattern along all the differ-
ent frequencies and spatial directions. This allows the 3D optimiza-
tion of the main lobe and also reduces the influence of ceiling and

floor reflections. To avoid computing new beamforming coefficients
for every estimated position, we only compute it for the 12 speaker
positions and we use the coefficients corresponding to the closest
position. The WAcc when we use the true utterance segmentation
and true speaker localization for different beamformers is: CVX-BF
66.11, DS-BF 64.69 and No-BF 58.98 %. The corresponding WAcc
when we use DBN-VAD segmention and PoPi-SLoc is: 63.54, 61.93
and 57.39 %. All of these results justify the use of the CVX-BF.

3.4. Vector Taylor series enhancement and noise estimation

The reason for using VTS rather than other methods, such as
marginalization of missing data [18], is that the representation of
the clean estimated signal can be in the cepstral domain, which is a
more appropriate representation for medium vocabulary recognition
(Sec. 2.2). Given the noisy feature vector yt at frame time t, a 0th
order VTS estimates the clean feature vector x̂t as follows [19]:

x̂t = yt −
K∑
k=1

P (k|yt)g
(
µ
(k)
X , n̂t

)
, (2)

where n̂t is the noise estimation and g(x,n) = log(1+exp(n−x)).
P (k|yt) and µ

(k)
X are the component probability and mean of a

Gaussian mixture model (GMM) of clean speech with K compo-
nents. Mention that we use K = 256 GMM components, covari-
ance matrix of the noise estimation and 26-Log-Mel-Spectrum fea-
ture vector (Sec. 2.2). We use a noise estimate based on the first-
last-frames (FLFr-Noise, [6]). This estimation assumes that the first
and last 20 frames of the segmented signal correspond to noise and
these frames are used to estimate the Log-Mel-Spectrum noise (and
its corresponding covariance matrix) by means of a linear interpo-
lation over the remaining frames. The WAcc when we use the true
utterance segmentation, true speaker localizer and CVX-BF for dif-
ferent noise estimations on VTS is: True-Noise 78.22, FLFr-Noise
70.96, Min-Statistics-Noise [20] 68.76 , MMSE-noise [21] 51.92 %.
The corresponding WAcc with DBN-VAD segmentation, PoPi-SLoc
and CVX-BF is: 71.57, 65.69, 63.80 and 48.23 %. In addition, it
is worth to mention that we also tried other kinds of compensation
algorithms such as binary imputation [6]. This imputation provides
worse results than VTS and needs tuning of the threshold of the miss-
ing data mask. All of these results justify the use of VTS-Enh with
FLFr-Noise.

4. ANALYSIS OF THE RESULTS

Table 1 summarizes the most important WAcc results presented in
the paper. If we pay attention to the average column, we can see that
the two proposed enhancements produce a positive synergy: we start
with 57.39, then the addition of the CVX-BF gives 63.54 and the ad-
dition of VTS 65.69 %. This is our best result without using any true
information. This synergy can be even bigger with a more precise
noise estimation (see the 74.57 that we can reach with the true noise
on VTS). We can also reach 73.05, without using any true informa-
tion, if we apply the enhancements on the multicondition training
set of Sec. 2.1.3. Without the enhancements, we reach 66.40. These
two results are better than their respective 65.69 and 57.39 because
the mismatch between the trained HMMs and the test sentences is
reduced. To measure the robustness of the system to speaker posi-
tion changes we create a new test set, as in Sec. 2.1.2, but using
the positions not included in the training, i.e., the closest to the ar-
ray: LF/08, LG06, LM/04 and LL/02 (Fig. 2). Its averaged result



Table 1. Word accuracies (WAcc, %) obtained by different configurations of the proposed system tested over the presented Embedded-DIRHA
database for the different SNR sets.

Utterance Speaker localiz. Type of noise Clean 10 dB 0 dB Average
segmentation and beamforming and enhacement

True-VAD No No 81.33 61.31 34.29 58.98
DBN-VAD No No 81.49 61.82 28.87 57.39
True-VAD True-SLoc and CVX No 83.54 68.95 45.83 66.11
True-VAD PoPi-SLoc and CVX No 83.47 68.55 44.08 65.37
DBN-VAD True-SLoc and CVX No 84.81 66.40 40.90 64.04
DBN-VAD PoPi-SLoc and CVX No 84.73 65.92 39.98 63.54
True-VAD True-SLoc and CVX True-N and VTS 84.81 80.22 69.62 78.22
True-VAD PoPi-SLoc and CVX FLFr-N and VTS 84.81 74.68 53.40 70.96
DBN-VAD True-SLoc and CVX True-N and VTS 83.28 78.29 61.15 74.57
DBN-VAD PoPi-SLoc and CVX FLFr-N and VTS 84.10 69.86 43.12 65.69

without retraining the GMMs of VTS and HMMs to the new possi-
ble reverberations is 61.65. This result is not very different from the
65.69 of the farther positions. This can be explained by the fact that,
although on the 2-D plane the distance to the array seems to change
a lot, in 3-D it is really almost the same distance and consequently
the same reverberation time. Finally, if we observe the Clean column
we see that, despite having a medium size lexicon (Sec. 2.1.2), the
performance is low (around 84 for our best system) compared with
the one (95) obtained with a similar database such as [6]. This is
because of the errors in the keywords for which the bigram does not
help for their predictions (the WAcc of the commands is 87 and of
the key words 78).

5. CONCLUSION AND FUTURE WORK

This paper presented a system for distant speech recognition in re-
verberant and noisy conditions, intended to control a room with com-
mands by means of signal recorded by a star-shaped microphone ar-
ray. The proposed system has been an improved version of the sys-
tems presented in [6, 5]. This improvement has consisted of the cre-
ation of a prototype which can segment utterances in real-time, lo-
calize the speaker and generate robust ASR results off-line by means
of a novel combination of CVX-BF with VTS enhancements. The
selection of the different components has been carefully justified in
terms of WAcc, and another metrics such as VAD classification and
angle accuracy. To do so, we have proposed a database that sim-
ulates distant speech recognition in a home environment. We have
improved the results even more by means of multicondition train-
ing and show that the system is robust to speaker position changes.
As future work we plan to explore these two ideas: 1) the fusion of
some of the components, such as the PoPi-localizer with the VAD by
means of the pitch [22] and 2) the extension of the system to all the
rooms of the ITEA apartment by using the network of microphone
arrays.

6. APPENDIX

6.1. Natural mixing

We compute the target SNR as:

SNR = 10 log10
Excentral
Encentral

(dB) (3)

where Excentral and Encentral are the whole energy of the cen-
tral microphone of the clean embedded signal and of a noise seg-

ment with same length respectively. Natural mixing [2] means that
we randomly select the noise segment that provides our target SNR
(within an error of± 1.5 dB) without modifying the gain of both, the
clean and the noise signals. If no noise segment which fits the target
SNR is found, all channels of the clean signal are multiplied by a
gain (which depends on the closest found SNR to the target SNR)
to find at least an appropriate noise segment. In addition, if the fi-
nal mix shows saturation in some of the channels we multiply all of
them by a common factor to avoid this problem.

6.2. Transcription association

In order to evaluate the VAD in terms of WAcc, we associate the
word transcription to the estimated segments as follows: If we have
a larger number of estimated than of true segments, the associated
transcription of the estimated segment starts with the transcription of
the nearest true segment and finishes when we cover all the true tran-
scriptions. The estimated segments that remain without transcription
are not recognized. If we have a lower number of estimated than
of true segments, we do the same, but the true segments, which re-
main without associated estimated segments, are recognized as white
noise with the true transcription. This association guarantees that, in-
dependently of the used VAD, we always recognize the same number
of segments.

6.3. Angle accuracy

We compute the accuracy of the speaker estimated angle as:

Accangle = 100(1− dangle(α̂, α)/180) (4)

where α̂ and α are the estimated and true angles in degrees and
dangle is the minimum angle difference between two angles (note
that its value is always in the interval [0, 180◦[).
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