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ABSTRACT

Gaussian textures can be easily simulated by convolving an
image sample with a white noise. However, this procedure
is not very flexible (it does not allow for non-uniform grids
in particular), and becomes computationally heavy for very
large domains. We here propose an algorithm that summa-
rizes a texture sample into a synthesis-oriented texton, that
is, a small image for which the discrete spot noise simulation
(summed and normalized randomly-shifted copies of the tex-
ton) is more efficient than the classical convolution algorithm.
Using this synthesis-oriented texture summary, Gaussian tex-
tures can be generated on-demand in a faster, simpler, and
more flexible way.

Index Terms— Spot noise, texton, Gaussian texture, tex-
ture synthesis, error reduction algorithm

1. INTRODUCTION

Among the various existing models of textures, Gaussian tex-
tures form an interesting class, in particular because they rely
on a mathematical model that is very well adapted to theoret-
ical investigations. Gaussian textures allow for by-example
synthesis [5], and can be easily generalized to dynamic scenes
or used for texture mixing [12]. The classical spectral simu-
lation, which is based on the discrete Fourier transform and
consists in convolving a standard Gaussian white noise by
a kernel image k, has some limitations: 1) The underlying
Gaussian model is implicitly periodic; 2) It does not allow for
local variations of the kernel or the grid.

A Gaussian texture can be approximated by a high-
intensity discrete spot noise (DSN), obtained by summing
randomly-shifted copies of the kernel k along the points of a
Poisson process of intensity λ. The direct simulation of the
DSN is simple and allows parallel local evaluation using stan-
dard computer graphics techniques for the Poisson process
simulation [6]. Still, the DSN approximation of a Gaussian
texture is satisfying only for sufficiently high intensity λ,
so that the DSN simulation is generally not faster than the
spectral simulation. In particular, using the compact texton
introduced in [2] as a kernel for DSN synthesis generally
results in a very poor approximation for small values of λ.

In this paper we show that, given an exemplar texture im-
age u, it is possible to compute a synthesis-oriented texton

∗ =

Fig. 1. Spot noise synthesis at low intensity. The synthesized tex-
ture on the right was obtained by the convolution of a synthesis-
oriented texton with a sparse Poisson process. The exemplar texture
is shown on the left.

(SOT) having a prescribed small support and for which the as-
sociated DSN is close to the Gaussian texture associated with
u, even for a low intensity λ (see Fig. 1). This SOT, which can
be considered as an inverse texture synthesis solution [11] for
the Gaussian model, is computed using the classical error re-
duction algorithm, introduced in [4] for phase retrieval, with
a random phase initialization (Section 3). As will be shown
in Section 4, for an average number of 30 impacts per pixels,
the DSN associated with the SOT produces visually satisfying
results, and is thus more competitive than the spectral simu-
lation algorithm.

2. SPOT NOISE TEXTURE MODELS

2.1. DSN and ADSN models on Z2

We first describe the DSN and asymptotic DSN (ADSN) mod-
els on Z2, since it is the most natural framework. In the fol-
lowing, h : Z2 → R is a function with finite support Sh, and
|A| stands for the cardinality of a subset A of Z2.

The DSN on Z2 with spot h and intensity λ > 0, origi-
nally introduced in [10], is the stationary random processFλ,h
on Z2 defined by

∀x ∈ Z2, Fλ,h(x) =
∑
i≥1

h(x−Xi) ,

where the points Xi are chosen according to a Poisson point
process on Z2 with intensity λ. If one denotes by * the convo-
lution product on RZ2

, one can see that Fλ,h = h ∗ Pλ where
the random variables Pλ(y) = |{i,Xi = y}| are i.i.d. and
follow a Poisson distribution with intensity λ.

The mean value of Fλ,h is given by m = E
(
Fλ,h(x)

)
=

λ
∑

y∈Z2 h(y) , and, setting h̃(x) = h(−x), its covariance is



C(v) = E
(

(Fλ,h(x)−m)(Fλ,h(x+v)−m)
)

= λh∗ h̃(v).

Notice that Supp(C) ⊂ Sh − Sh := {x− y ; x,y ∈ Sh}.
The renormalized DSN defined by

Gλ,h =
Fλ,h − E(Fλ,h)√

λ
=

1√
λ

(
h ∗ Pλ − λ

∑
y∈Z2

h(y)
)

has zero-mean and covariance function h ∗ h̃, and it is well-
known [9] that when λ → +∞, Gλ,h converges in distribu-
tion to the Gaussian random field Gh with same mean and
covariance, which is thus called the ADSN associated to h.
Notice that the random process Gh can be simply simulated
by k ∗ W , where W is a standard Gaussian white noise on
Z2 and k : Z2 → R is any function with compact-support
such that k ∗ k̃ = h ∗ h̃. Such a square root k of the covari-
ance is called a texton in [2,12]. In the present paper, we will
call a SOT any compactly-supported function k which is an
approximate square root of the covariance and such that the
approximation of Gk by Gλ,k is visually satisfying even for
low values of λ.

In the following, the random fields Gλ,h and Gh will be
referred to as DSNλ(h) and ADSN(h) respectively.

2.2. DSN and ADSN models on a circular finite domain

We now consider the case of a finite (circular) domain, which
is a more adapted framework for numerical simulations. Let
Θ ⊂ Z2 be a finite rectangular domain of size M × N ,
equipped with the addition modulo (M,N) and the circular
convolution operator �. We will assume that Θ contains a
translation of Sh, so that h can be identified to a function
defined on Θ. This allows us to consider the circular DSN
associated to h, denoted by FΘ

λ,h, which is built by adding
copies of h positioned according to a Poisson point process
on Θ with intensity λ. All the properties mentioned in Section
2.1 have their circular counterparts. In particular, the renor-
malized circular DSN GΘ

λ,h has mean 0, covariance equal to
h� h̃, and when λ→ +∞ it converges in distribution to the
Gaussian random field GΘ

h with same mean and covariance,
called the circular ADSN associated to h. In the following,
the random fields GΘ

λ,h and GΘ
h will also be referred to as

CDSNΘ
λ (h) and CADSNΘ(h).

It is interesting to remark that a restriction of DSN(h) to
a rectangular domain Ω ⊂ Z2 can be seen as a restriction of
a well-chosen circular DSN. Indeed, by construction, as soon
as Ω− Sh ⊂ Θ, the restrictions to Ω of GΘ

λ,h and Gλ,h share
the same distribution, which is also true for GΘ

h and Gh.
In the following, we will need the discrete Fourier trans-

form (DFT) on Θ, defined, for a function v : Θ→ R, by

v̂(ξ) =
∑
x∈Θ

v(x) exp

(
−2iπ

(x1ξ1
M

+
x2ξ2
N

))
where x = (x1, x2) and ξ = (ξ1, ξ2).

2.3. Optimal transport distances between ADSN models

Among the numerous assets of Gaussian texture models is
the possibility to compute the L2 optimal transport distance
between finite-dimensional marginal distributions in terms of
the covariance operators. As shown in [12], the correspond-
ing expression becomes tractable as soon as there exists a
common eigenvector basis for the covariance operators. Us-
ing for example the Fourier basis, the (squared) L2 optimal
transport distance between µ0 = CADSNΘ(h0) and µ1 =
CADSNΘ(h1) is given by

d2
OT (µ0, µ1) =

∑
ξ∈Θ

(
|ĥ0|2 + |ĥ1|2 − 2|ĥ∗0ĥ1|

)
(ξ). (1)

This allows us to define a projection of h1 on the set of kernels
associated to the model µ0 as a solution of

Arg min
k, k�k̃=h0�h̃0

dOT (CADSNΘ(k),CADSNΘ(h1)) .

One particular solution ph0
(h1) can be computed by imposi-

tion of the Fourier modulus:

̂ph0
(h1) =

ĥ0ĥ
∗
0ĥ1

|ĥ∗0ĥ1|
1ĥ∗

0 ĥ1 6=0. (2)

Notice that ph0(h1) is defined on Θ and does not a priori
identifies to a spot h : Z2 → R with compact support. Let us
mention that (1) and (2) extend to the case of color circular
ADSN, using a componentwise (R,G,B) DFT (in that case,
z∗ stands for the transpose conjugate of the vector z). Note
that with d channels, ph0 reduces to the orthogonal projection,
for each ξ, of ĥ1(ξ) onto the Cd-circle {eiϕĥ0(ξ);ϕ ∈ R},
leading to a geometric interpretation of (2).

The extension of those results to a non-circular frame-
work may be difficult. One can try for example to express
the optimal transport distance between the Ω-restrictions
of ADSN(h0) and ADSN(h1), but since the correspond-
ing covariance operators are now only Toeplitz (and not
circulant), the Fourier basis functions are no longer eigen-
vectors. However, the last remark of Section 2.2 shows
that the distance between the Ω-restrictions is less than
dOT (CADSNΘ(h0),CADSNΘ(h1)) for any Θ containing
Ω − Sh. Thus, the distance between finite ADSN pieces is
controlled by the distance between larger circular counter-
parts.

2.4. Simulation on a finite domain

As explained above, the DSN (resp. ADSN) on Z2 or a circu-
lar domain Θ can be seen as a convolution of the spot with a
Poisson point process (resp. a Gaussian white noise). In the
circular framework, the convolution can be performed using
the DFT. In fact, this spectral method can also be used to sim-
ulate a DSN on a non-circular finite domain by using a larger



domain and using a crop as post-processing (in view of the
remark of Section 2.2).

However, for a DSN with a very low intensity λ, the Pois-
son point process is sparse so that the convolution can be per-
formed efficiently in the spatial domain. This direct summa-
tion method, summarized in Algorithm 1, can be used for the
simulation of a finite restriction of DSNλ(h), or for the sim-
ulation of CDSNΘ

λ (h).

Algorithm 1: DSN simulation on a finite domain Ω

- Set Ω̄ = Ω− Sh = {x− y ; x ∈ Ω,y ∈ Sh}.
- Draw n with Poisson distribution of intensity λ|Ω̄|.
- Draw x1, . . . ,xn independently and uniformly in Ω̄.

- ∀x ∈ Ω, f(x) := 1√
λ

(
∑n
i=1 h(x− xi)− λ

∑
h) .

Algorithm 1 has a mean complexity of O(λ|Sh||Ω|),
λ|Sh| being the mean number of impacts per pixel, versus
O(|Ω| log(|Ω|)) for the spectral method. Therefore, the direct
summation method will be faster for large domains Ω, but
more importantly, it allows for very efficient on-demand syn-
thesis. Notice that it can be parallelized using a grid-based
simulation scheme for the Poisson point process [8].

3. A SYNTHESIS-ORIENTED TEXTON

The complexity analysis above shows that the efficiency of
Algorithm 1 is closely linked to the possibility of obtaining a
visually satisfying texture with a small value of λ. As we said
in Introduction, the texton originally proposed in [2] is inad-
equate for our purpose, since the convergence of the Poisson
process to the Gaussian model is particularly slow for this
concentrated kernel. The object of this part is to describe an
algorithm that computes a kernel h : Z2 → R with support
Sh ⊂ S (S being a given finite subset of Z2) that leads to
an efficient DSN synthesis of the Gaussian texture associated
to an original texture sample u : Ω → R. For the sake of
clarity, we assume that Ω (a M ×N rectangle of Z2) contains
S and S − S (in particular, the observation is larger than the
covariance support).

3.1. Gaussian model estimation

A first question that arises is the estimation of the Gaussian
model associated to u. Following [2, 5, 12], we compute the
mean m = 1

|Ω|
∑

x∈Ω u(x) and the periodic autocorrelation

cu = tu � t̃u , where tu =
1√
|Ω|

(u− ū) . (3)

Even if the non-periodic nature of the observation u may bias
this estimator of the covariance, it is of great practical use
because its DFT is given by ĉu = |t̂u|2, and also because it is
the actual covariance of the circular Gaussian field N (0, cu)

on Θ, which is the circular ADSN associated to any kernel k
such that k � k̃ = cu (or in Fourier domain, |k̂| = |t̂u|).

Now, we would like to find a kernel h with support Sh ⊂
S such that cu = h ∗ h̃. This problem is an analog of the
phase retrieval problem and may lead to multiple solutions (if
h is a solution, so are −h, h̃ or −h̃, and in particular cases
there may be other solutions, see [7]). Here, because of the
constraint on Sh, there is no exact solution in general, but we
can look for an approximate solution by trying to solve

Arg min
h, Sh⊂S

dOT (CADSNΩ(h),CADSNΩ(tu)) , (4)

where the use of circular models is justified by the need of an
explicit formula for the optimal transport distance.

3.2. Alternating projections for SOT computation

The optimization problem (4) is difficult to solve, but we can
propose an approximate algorithm which has proven useful
in the phase retrieval literature. Indeed, Algorithm 2 below
alternates between imposition of the Fourier modulus (2) and
the projection qS : t 7→ t1S on the support constraint (recall
that qS is an orthogonal projection on a convex set).

Algorithm 2: SOT computation

- Initialization: t̂← t̂ue
iψ where ψ is a uniform random

phase function, and tu is given by (3).

- Repeat (n times) t← qS(ptu(t)) .

Let us remark that if u is a realization of the random phase
noise (RPN) [5] associated to a texton τ with support S, then
we have exactly |t̂u| = |τ̂ | so that the problem of recovering
τ from u is exactly a phase retrieval problem for which the
above algorithm was already proposed in [4]. In general, such
a compactly-supported texton may not exist, and the alternat-
ing projections converges towards a compact kernel which is
an approximate solution of the phase retrieval problem.

Note also that since we do not expect convergence to a
global minimizer of (4), the initialization plays a central role.
Choosing a null initial phase function, as done in [1] in a
non-DSN context, leads to a texton that is very inefficient for
low-intensity DSN synthesis because it is too concentrated
around 0. This is why we initialize the algorithm with a ran-
dom phase function, which produces a much more efficient
texton, even if the distance in (4) achieved by the algorithm
is in general a bit larger than for the null-phase initialization.
The output of Algorithm 2 can be seen as a kernel with maxi-
mally random phase under Fourier modulus and support con-
straints. Finally, let us mention that Algorithm 2 can be used
as is to produce SOTs for RGB textures (see Section 2.3).

The questions of the convergence and the influence of the
random initialization were raised by [7]. The study below
shows that both these issues are negligible in terms of the re-
sulting Gaussian texture. Indeed, we analyzed the behavior of
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Fig. 2. Iterates of Algorithm 2. Evolution of the empirical mean
(left) and standard deviation (right) of the RME computed after n
iterations of Algorithm 2 (estimated over 1000 samples) run on a
gray-level version of the texture used in the top row of Fig. 3. Ob-
serve that the mean RME quickly decreases, which means that most
of the Gaussian model approximation is done in the first iterations.
Notice also that the standard deviation does not tend to zero; this
reflects that the algorithm does not have a unique convergence point.

Algorithm 2 by considering the (squared) relative model error

RME(t, tu)2 =

∑
ξ

(
|t̂u|2 + |t̂ |2 − |t̂∗ut̂ |

)
(ξ)∑

ξ |t̂u|2(ξ)
.

The numerator is the optimal transport distance between
CADSNΩ(tu) and CADSNΩ(t), and the denominator is the
marginal variance of CADSNΩ(tu).

A direct observation of the iterates shows that for each
random initialization, they seem to stabilize after a small
number of iterations, as already mentioned in [7]. To be more
precise, we computed the empirical mean d̄n and variance
σ̄2
n of the random variable Dn = RME(tu, Tn), where Tn

is the SOT obtained after n iterations of the algorithm with
random initialization. As one can see in Fig. 2, d̄n and σ̄n
do not change much for n ≥ 50, reflecting again the quick
stabilization of the iterates. Besides, the fact that σ̄n does not
tend to zero reaffirms the random nature of the output.

We also investigated the idea of running several times Al-
gorithm 2 with different random initializations and selecting
the output with the smallest RME, but numerical simulations
showed that the improvement in RME (for a fixed computa-
tion time) was not significant (below 1%).

4. RESULTS

In this last part, we present experiments (Fig. 1, 3 and 4)
showing that the SOT computed by Algorithm 2 allows us
to synthesize a Gaussian texture associated to a sample image
u by a DSN with a very low number of impacts per pixel. For
comparison purpose, we used in Fig. 4 the luminance texton
tlum obtained by subtracting to each channel of t̂u the phase
of 1

3 ûr+ 1
2 ûg+ 1

6 ûb (see [2]). Notice also that the use of small
support textons may decrease the color diversity, but as men-
tioned in [3], it is possible to apply a simple post-processing
(a 3× 3 linear transform of the color channels) to recover the
marginal color covariance of the original sample. We applied
this post-processing for the simulations of Fig. 3 only.

Fig. 3. Synthesis of color textures. One can see on the left three
Gaussian textures, and on the right, the results of DSN synthesis
(with 50 impacts per pixel) using the SOTs shown in the middle.

We can see that the DSN synthesis with the SOT is gen-
erally satisfying in terms of frequency content, even for a
low number of impacts per pixel. Using the SOT, the direct
summation method of Algorithm 1 thus becomes a competi-
tive way of synthesizing Gaussian textures, with an expected
number of operations per pixel below 100. As can be seen in
Fig. 4, the results are as good as Gabor noise by example [6]
(which requires around 1000 operations per pixel).

Concerning the precision of the model, with a reason-
able intensity, the DSN synthesis is considered to be a good
approximation of the ADSN (translating visual convergence
into a precise criterion seems difficult, but the gain obtained
with the SOT can be observed through the convergence of the
marginal distributions). It is thus sufficient to compare the
ADSNs obtained with tu and t, both visually and using the
RME. Fig. 4 shows that ADSN(t) and ADSN(tu) are indeed
visually close. In spite of this, the RME remains surprisingly
high (we often observed RMEs between 0.4 and 0.7). Notice
however that the SOT leads to lower RME value than the lu-
minance texton cropped with the same support. It means that,
although the luminance texton is a very concentrated sum-
mary of the texture, its cropped version is not the optimal
way of representing the texture on a given support. The SOT
is thus slightly better than the luminance texton for asymp-
totic synthesis, and drastically better for DSN synthesis.

To conclude, let us discuss the influence of the support
size. In the Gaussian model with a circular texton of radius
r, the values of two pixels at distance greater than 2r are in-
dependent. Therefore, increasing r results in the capture of
longer-range dependencies of the original texture, as illus-



Original u

SOT t
RME = 0.48

DSN(t), 10 imp./px DSN(t), 30 imp./px ADSN(t)

ADSN(tu)

Cropped
Luminance
Texton tclum
RME = 0.51

DSN(tclum), 30 imp./px

Cropped RPN
trpn

RME = 0.68

DSN(trpn), 30 imp./px Gabor noise

Fig. 4. DSN synthesis of a natural color texture, comparison. Top row: original texture (u), and the DSN and ADSN synthesis results
obtained with a 31 × 31 SOT t computed by Algorithm 2 (1000 iterations). The DSN intensities were set in order to match a given average
number of impacts per pixel. Bottom row: sample of the Gaussian model associated to u, DSN obtained with the cropped luminance texton
tclum [2], DSN obtained with a texton trpn cropped from a RPN realization of u, and Gabor noise synthesis [6]. Each DSN model is displayed
with its corresponding kernel. Contrary to other DSN models, the proposed SOT achieves a good visual proximity with the reference model
ADSN(tu) as the number of impacts per pixel attains 30. It also defines the most accurate asymptotic model (smallest RME).

u ADSN(t5) ADSN(t15) ADSN(t25)

RME = 0.56 RME = 0.49 RME = 0.43

Fig. 5. Influence of the support size. A Gaussian texture (u), and
samples of the models obtained with different SOTs tr with circu-
lar supports of radius r ∈ {5, 15, 25}. As expected, the quality of
approximation increases as r grows.

trated in Fig. 5. Hence, the efficiency of Algorithm 1 (and
of the SOT presented here) is directly linked to the nature of
the covariance of the considered Gaussian texture: in the case
of very long-range dependencies, the computational speed-
up may vanish and only the flexibility (on-demand synthesis,
texture with local variations, non-uniform grid) remains.
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