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ABSTRACT

Sensor networks are commonly deployed to measure data

from the environment and accurately estimate certain param-

eters. However, the number of deployed sensors is often

limited by several constraints, such as their cost. Therefore,

their locations must be opportunely optimized to enhance the

estimation of the parameters.

In a previous work, we considered a low-dimensional lin-

ear model for the measured data and proposed a near-optimal

algorithm to optimize the sensor placement. In this paper, we

propose to model the data as a union of subspaces to further

reduce the amount of sensors without degrading the quality

of the estimation. Moreover, we introduce a greedy algorithm

for the sensor placement for such a model and show the near-

optimality of its solution. Finally, we verify with numerical

experiments the advantage of the proposed model in reducing

the number of sensors while maintaining intact the estimation

performance.

Index Terms— Sensor placement, union of subspaces,

frame potential

1. INTRODUCTION

The performance of a sensor network and the quality of the

collected measurements mainly depend on the number and

locations of the deployed sensors. In this paper, we consider

a sensor network measuring a physical field y and assume that

this field can be represented by a low-dimensional model. In

previous works, the following model was considered

y = Θx, (1)

where y ∈ R
N are the values of the physical field at N differ-

ent locations, Θ ∈ R
N×M is the linear model, and x ∈ R

M

is the low-dimensional parametrization of the field.

The linear model defined in (1) assumes that the signals

y lie in one subspace of dimension M , that is y ∈ span(Θ).
However, such a model may not be sufficiently descriptive for
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certain applications. Therefore, in this paper we consider the

following, more complex, model.

Definition 1 (Union of Subspaces (UoS) [1]).

Y =
⋃

t∈T

St, St = {y : y = Ψtx} (2)

where Ψt ∈ R
N×K is the basis for subspace St of dimension

K ≤M and T is the set of indices.

That is to say that we consider the physical field y to lie in a

union of lower-dimensional subspaces. More precisely, y ∈
Y if there exists a t0 ∈ T such that y ∈ St0 .

Measuring y usingN sensors is often too expensive or im-

practical. In reality, we would only place L < N nodes, esti-

mate the parameters x by solving the linear inverse problem,

and then successively interpolate the measurements to recon-

struct y. The accuracy of the estimation, and subsequently of

the reconstruction, is directly related to the accuracy of the

measurements. It is therefore crucial to place those L sensors

in the locations where the most information can be collected.

When onlyL sensors are available and for the UoS model,

the system of equations (1) becomes

yL = Ψt,Lx, (3)

where t indicates the subspace and is generally unknown, L
is the set of indices corresponding to the L chosen sensor lo-

cations, and Ψt,L is the matrix formed by the rows of Ψt in-

dicated by L. Note that if we use the model in (1), we would

have ΘL instead of Ψt,L.

As we require an accurate estimation of x, it is of interest

to choose L such that the Mean Square Error (MSE) of the

solution of the inverse problem is minimized:

MSEL = E [‖x̂− x‖2], (4)

where x̂ are the estimated parameters from the measurements

yL, see (3). However, since it is unknown beforehand which

subspace produces the measurements in yL, the locations

should be chosen such that the reconstruction error is mini-

mized for all subspaces. Then given yL, we can estimate x̂



Fig. 1. A union of three 1D subspaces embedded in a 3D

space. The data is generated from either S1, S2 or S3. Note

that if we model the data as coming from the entire space

(i1 ⊕ i2 ⊕ i3) we need three parameters, while only two are

necessary for the union of subspaces (S1 ∪ S2 ∪ S3).

by solving the least squares problem

min
x̂

‖yL −Ψt,Lx̂‖
2
2, (5)

for every t ∈ T and selecting the minimizer.

Note that for a UoS model represented by T K-dimensio-

nal matrices, there is an equivalent model using only one ma-

trix. We refer to the latter as the Span of Subspaces (SoS)

model since it represents the TK-dimensional space spanned

by all T subspaces.

It is interesting to compare the two models in terms of

the minimum number of sensors necessary to have a unique

solution to the inverse problem. For the SoS model, we can

easily show using standard linear algebra results that L ≥
min (N,TK). On the other hand, L = K sensors are not

enough to distinguish between the T > 1 subspaces of the

UoS model, i.e. to ensure a one-to-one mapping between the

observed measurements yL and the parameters x. Actually, if

we defineHi,j as the convex hull of subspaces Si and Sj , then

the minimum number of sensorsL is the maximum dimension

of Hi,j over every pair of subspaces [1, 2]:

L ≥ sup
(i,j)∈T ×T

dim(Hi,j).

Moreover, if the subspaces are independent and of the same

dimensionality K, we obtain L = 2K.

Here, we underline one of the main motivations inspiring

this paper: if the physical field is well modeled by a UoS,

then we may be able to reduce the number of sensors needed

to solve the inverse problem. We can see an example of such

a scenario in Figure 1, where we depicted a 3D space and

three 1D subspaces, representing the SoS and the UoS model

respectively. In this case, only two parameters are needed

to uniquely determine the signal in the UoS model: one to

select the subspace and one to describe the signal in the se-

lected subspace, whereas we need three parameters for the

SoS model.

One possible practical scenario where the UoS model (2)

applies is in the placement of thermal sensors for multicore

microprocessors. In [3], the temperature field y was modeled

as in (1); however, since different workloads produce differ-

ent temperature patterns, y could be modeled as a UoS with

subspaces corresponding to those workloads and thus gain a

reduction in the required number of sensors as discussed.

So far different techniques have been developed to opti-

mize the sensor locations when considering the SoS model.

There exist methods based on convex optimization, such as

[4]. The authors of [5] proposed to place the sensors on a

uniform grid whose granularity is optimized. Then there ex-

ist greedy algorithms based on different cost functions like

entropy [6] or mutual information [7]. Finally, we proposed

[8] a greedy algorithm based on the frame potential (8), that

shows superior performance to [6, 7], reduced computational

time and is also near-optimal with respect to both the frame

potential and the MSE.

In this work, we extend the methods presented in [8] to

physical fields modeled as UoS and demonstrate the possibil-

ity of using fewer sensors while still maintaining the recon-

struction accuracy. More precisely, we propose a cost func-

tion and a greedy algorithm to choose the optimal L rows

from the matrices Ψt such that the MSE of the reconstruction

for all matrices is jointly minimized. Then, building upon the

results obtained in [8] for the SoS model, we derive the the-

oretical bounds on the performance of the algorithm showing

that it is near-optimal with respect to the joint MSE. Finally,

we present numerical simulations highlighting the advantages

of the UoS model and of the proposed sensor placement algo-

rithm.

2. NEAR-OPTIMAL SENSOR PLACEMENT

In this section, we first introduce two cost functions used to

select the optimal rows from the matrices for the UoS model

and to evaluate the performance of the sensor placement.

Then, we describe a greedy sensor placement algorithm and

prove its near-optimality in terms of the two cost functions.

We assume throughout the section that the measured sam-

ples of the physical field are corrupted by i.i.d. Gaussian noise

with zero-mean and variance σ. For the chosen noise model,

the MSE of the linear inverse problem defined in (3) is equal

to

MSE(Ψt,L) = σ2
K
∑

k=1

1

λt,k
, (6)

where λt,k are the eigenvalues of the matrix Tt,L = Ψ∗
t,LΨt,L,

see [9].



For the joint optimization of the MSE for all subspaces

in the UoS model, we propose to use a weighted sum of the

MSE for each matrix Ψt,L, t ∈ T :

MSEu(ΨL) =
T
∑

t=1

wt MSE(Ψt,L), (7)

where wt > 0 and

T
∑

t=1

wt = 1. The weights represent the

probability that the measured signal lies in the corresponding

subspace. If we assume that the signals are uniformly gener-

ated by the subspaces, then wt = 1
T

. A higher weight for a

specific subspace will bias the sensor placement towards bet-

ter estimates for that subspace.

However, directly minimizing the MSE can lead to a

placement with an arbitrarily bad MSE [10] and a proxy

should be used instead [8]. Recently, we showed [8] that

minimizing the frame potential for a SoS model provides a

solution that is near-optimal in terms of MSE. The frame

potential (FP) is defined as:

FP(Ψt,L) =
∑

i,j∈L

|〈ψt,i, ψt,j〉|
2, (8)

and measures how close the rows of Ψt,L are to being orthog-

onal. Indeed, the minimum FP is achieved by orthonormal

bases (L = K) or unit norm tight frames (L > K) [11].

To extend the concept described in [8] to the UoS case, we

consider a weighted sum of the FP of the matrices describing

the different subspaces:

FPu(ΨL) =
T
∑

t=1

wt FP(Ψt,L), (9)

where the weights are equal to the ones introduced in (7).

We can then extend the algorithm FrameSense to the UoS

model. FrameSense was introduced in [8] and chooses L such

that the FP (8) is greedily minimized. The extension consid-

ers the FPu (9) in place of the FP and its pseudocode is given

in Algorithm 1. The chosen L sensor locations are selected by

optimizing the following cost function

F(S) = FPu(Ψ)− FPu(ΨN\S), (10)

where ΨN\S is the matrix formed by the remaining rows after

removing the set of rows in S which correspond to eliminated

sensor locations.

It should be noted that the chosen cost function (10)

is submodular and that the algorithm implements a greedy

worst-out strategy. Using these two characteristics jointly

with a classic result of Nemhauser et al [12] regarding the

greedy optimization of submodular cost functions, we are

able to bound the worst case performance of Algorithm 1

with respect to both the FPu and the MSEu. The proofs of

Algorithm 1 FrameSense for UoS

Require: T subspaces Ψ, Number of sensors L

Ensure: Sensor locations L

1. Initialize the set of available locations N = 1, 2, ..., N .

2. Initialize the set of eliminated locations S = ∅.

3. Repeat until L locations are found:

(a) Find the worst row: i∗ = arg min
i∈N\S

F (S ∪ i).

(b) Update S = S ∪ i∗.

(c) If |S| = N − L, stop.

4. Set L = N \ S .

the two following theorems follow the strategy used in [8]

and are omitted for sake of brevity.

Before stating the results, we need to introduce the follow-

ing quantities related to the sensing energies of the selected

rows. For a given matrix, we define Lt,L as the sum of the L

row norms for the matrix Ψt

Lt,L =
∑

i∈L

‖ψt,i‖
2. (11)

We also defineLt,min andLt,max as the minimizers and max-

imizers of (11); finally, we define Lmin and Lmax to be their

minimum and maximum over all the matrices in the UoS

model.

In the first theorem, we prove that Algorithm 1 finds a so-

lution that is always close, in terms of FPu, to the optimal

one. We define the optimal solution as the one obtained by an

exhaustive search over all possible selections of sensor loca-

tions.

Theorem 1 (FPu bound). Let L be the output of Algorithm

1 and OPT = arg min
A∈N ,|A|=L

FPu(ΨA) be the optimal sen-

sor placement that minimizes FPu, then Algorithm 1 is near-

optimal w.r.t. the FPu:

FPu(ΨL) ≤ γ FPu(ΨOPT ),

where γ =
(

1 + 1
e

(

FPu(Ψ) K
L2

min

− 1
))

.

Note how the quality of FPu(ΨL) depends on the FPu of

the given set of matrices as well as Lmin, that is the smallest

sum of L row norms. In the literature, γ is also known as the

approximation factor of the algorithm.

Since the main goal is to have a sensor placement such

that MSEu of the solution to the inverse problem (3) is mini-

mized, we now show that under some conditions on the spec-

tra of the initial matrices, the obtained MSEu is near-optimal.

Leveraging the concept of (δ, L)-bounded frames [8] and con-

sidering the maximizer and minimizer of the eigenvalues over

all matrices in the UoS model, the following theorem estab-

lishes the bound on the obtained MSEu.
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Fig. 2. Performance evaluation of the three sensor placement

algorithms on randomly generated subspaces. We considered

Ψ ∈ R
100×10 and varied the number of sensors placed while

measuring the obtained MSEu. Note how the algorithm based

on the FP outperforms the other two.

Theorem 2 (MSEu bound for (δ, L)-bounded frames). For a

set of T (δ, L)-bounded frames Ψ, let L be the output of Algo-

rithm 1 and OPT = arg min
A∈N ,|A|=L

MSEu(ΨA) be the optimal

sensor placement that minimizes MSEu, then Algorithm 1 is

near-optimal w.r.t. the MSEu:

MSEu(ΨL) ≤ ηMSEu(ΨOPT ),

with η = γ Lmax

Lmin

(d+δ)2

(d−δ)2 where d = Lmean

K
and Lmean is the

average value of Lt,L and γ is the approximation factor for

the FPu introduced in Theorem 1.

Thus, minimizing FPu also results in a placement that is

near-optimal with respect to MSEu as desired.

3. NUMERICAL RESULTS

In this section we aim at evaluating two factors: how well

Algorithm 1 performs with regards to other sensor placement

algorithms for the UoS model and the advantages of using a

UoS model over a standard approach based on the SoS one.

For both experiments, we considered three subspaces spanned

by Gaussian random matrices Ψt ∈ R
100×10. Therefore, we

assume the physical field y ∈ R
100 to lie in three subspaces

of dimension ten.

In the first experiment, we compared Algorithm 1 with a

greedy algorithm optimizing directly the MSEu by iteratively

adding to L the row with the best MSEu and a random al-

gorithm choosing uniformly among all the possible locations.

We varied the number of placed sensors and measured the

MSEu obtained by each algorithm. The results are shown

in Figure 2, where we note that the algorithm based on FPu
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Fig. 3. Performance comparison for the linear inverse prob-

lem when the physical field y is modeled as a UoS or a SoS.

For each realization of the experiment, we randomly gener-

ated three matrices Ψt ∈ R
100×10 and Θ is a basis for the

SoS model. For both models, we considered the greedy al-

gorithm minimizing the FPu and we compare the obtained

MSEu. Note that the MSEu achieved by the UoS model is

significantly better for all L. For L < 30 the performance

of the SoS is not measurable since the solution of its inverse

problem is not unique. If we consider L ≥ 30, the average

improvement of the MSE given by the UoS model is 48.5 dB.

outperforms the other two. Furthermore, we underline that

a direct greedy optimization of the MSE is not effective and

does not show any performance gains compared to a random

placement.

In the second experiment, we compared the quality of the

inverse problem solution when the physical field y is modeled

as a UoS or a SoS. As mentioned in Section 2, it is possible

to represent a UoS modeled by T matrices with a single ma-

trix spanning the SoS. For each model, the FPu is used to

select the rows and we measure the MSEu on the output ma-

trices. For the UoS, we assign equal weights to the different

subspaces. The results are shown in Figure 3. Notice that

the SoS model is 30-dimensional since the three subspaces

are with probability one orthogonal to each other. Therefore,

the solution of the inverse problem for the SoS model when

L < 30 is not unique and the obtained MSE values for the

SoS model under this threshold cannot be fairly compared to

the UoS case. However, when we compare the performance

for L ≥ 30, we highlight that UoS has on average a 48.5 dB

advantage. This considerable difference is attributed to the

fact that the union in this case consists of three independent

uncorrelated subspaces, an optimal scenario; in a real world

setting, it could be less pronounced. Nonetheless, we under-

line two significant advantages of the UoS model over the SoS

model:

1. It is possible to use less sensors while obtaining a higher



precision.

2. The achieved MSEu for UoS is significantly better even

for the same number of sensors.

While this result was expected, it is not trivial. In fact, finding

a sensor placement that achieves a good MSE for all the three

matrices is a harder problem and could have counterbalanced

the reduced number of parameters to estimate.

4. CONCLUSION

We studied the sensor placement problem as defined in [8] to

consider the case when the signals of interest lie in a union

of subspaces, each represented by a linear model Ψt. More

precisely, we proposed a greedy algorithm that uses a cost

function based on the weighted sum of the frame potentials

to choose the rows that jointly minimize the reconstruction

MSE for all matrices. Further, we showed that the proposed

algorithm is near-optimal w.r.t. to the joint MSE, an important

aspect for the practical applications of such an algorithm.

With two numerical experiments, we showed that the use

of the union of subspaces model allows to i) use a lower num-

ber of sensors while maintaining the reconstruction perfor-

mance, or ii) achieve, using the same number of sensors, a

lower reconstruction MSE. For example, with random Gaus-

sian matrices we improve the MSE by 48.5 dB on average.

Future work is focused on the testing of the UoS model

and the sensor placement algorithm for real-world applica-

tions. Note that not every physical field may be success-

fully modeled as a UoS. Additionally, the estimation of such

a model is more challenging than that of the usual SoS model.

In fact, while optimal algorithms exist for the latter, see prin-

cipal components analysis, the estimation of the former relies

on the solution of an optimization problem with many non-

optimal local minima.
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