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ABSTRACT
In this paper, we develop a novel Conditional Random Field
(CRF) formulation to jointly extract road networks from a set
of high resolution satellite images. Our fully unsupervised
method relies on a pairwise CRF model defined over a set
of test images, which encodes prior assumptions about the
roads such as thinness, elongation. Four competitive energy
terms related to color, shape, symmetry and contrast-sensitive
potentials are suitably defined to tackle with the challenging
problem of road network extraction. The resulting objective
energy is minimized by resorting to graph-cuts tools. Promis-
ing results are obtained for developed suburban scenes in re-
motely sensed images. The proposed model improve signif-
icantly the segmentation quality, compared against the inde-
pendent CRF and two state-of-the-art methods.

Index Terms— Road network, joint segmentation, CRF.

1. INTRODUCTION

Automated road network extraction from a satellite image is a
challenging task with important applications in mapping and
remote sensing. The well-known computer vision techniques
alone are not relevant to automatically extract the road net-
work from a given image due to several constraints. Indeed,
the road networks observed in a high resolution satellite im-
age may exhibit a wide variability in visual appearance (e.g.
spectral response, shape, contrast) that it is complex to model
accurately. Roads can also be occluded by other nearby ob-
jects like buildings and trees and, even vehicles especially for
high resolution images.
Most methods have attempted to solve this problem using a
semi-supervised or semi-automatic system as they rely re-
spectively on a training stage or a manual identification of
seed points. They can be grouped as knowledge-based meth-
ods [1], mathematical morphology [2], snakes [3], marked
point process [4] and classification [5–9]. In [1], the geo-
metric and radiometric properties of road are expressed and
then a top-down process is applied to check their validity on
image regions. This knowledge-based method fails to cope
with large intra-class variability. In [2], mathematical mor-

phology operations are applied to preserve the elongated road
areas, filter non-road objects and bridge gaps due to shadows,
overhanging trees etc. However, gaps may remain if roads
are completely broken and there is no useful information as-
sisting the linkage. Subsequently, the road segmentation is
refined with a pair of coupled active contours [3]. In [4],
an object-based probabilistic representation is derived with
marked point processes to integrate priors on the connectivity
and intersection geometry of roads. The drawbacks are due to
their difficult parameterization and high computational cost
of inference. Alternative methods formulate the road network
extraction as a binary classification problem. For instance,
in [5], the image is pre-processed via a series of wavelet based
filter banks, a fuzzy inference algorithm is then applied to de-
tect the roads. In [6], a variety of network structures with dif-
ferent iteration times are used to determine the best network
structure. In [8], a deep belief network is trained to detect
image patches containing roads based on massive amounts
of training data. A recent work [9] proposes a higher-order
CRF model to capture long-range structures such as roads:
the prior is represented by higher-order cliques that connect
superpixels along straight line segments. It is a supervised
method as it relies on some training databases.
In this paper, we are interested in detecting roads from a col-
lection of images. To this end, we adopt a novel point of
view: under a fully unsupervised framework, we pose such
joint road extraction as a joint binary labelling problem on
a multi-image graph of superpixels. The first contribution
concerns the lack of supervision as a pairwise CRF model
is defined on a set of test images to encode prior assumptions
about the roads (e.g. thinness, elongation). The second nov-
elty is related to the considered objective function consisting
of data-driven competitive energy terms suitably defined to
tackle with the challenging problem of road network extrac-
tion. To the best of our knowledge, there is no reported work
on co-segmentation of roads that simultaneously exploits the
geometric structures (elongation and symmetry) and, the rich
modelling possibilities of CRF potentials.
The paper is organized as follows. Sec. 2 and 3 present re-
spectively the image set representation in terms of a multi-



Fig. 1. The flowchart of our iterative method which relies on two
steps: (1) Data description and representation, (2) co-segmentation
process. In the first step, features are extracted and the multi-image
graph is built. Each arrow indicates a dependency of an image on its
neighboring image. In the second step, an iterative co-segmentation
process is applied to extract jointly road networks.

image graph and the joint CRF model built over it (see the
flowchart in Fig. 1). Sec. 4 gives experimental results on high
resolution satellite images. Conclusions and future work are
presented in Sec. 5.

2. IMAGE SET REPRESENTATION

Let I =
{
I1, . . . , IM

}
denote a set of high resolution, RGB

satellite images containing road networks. Rather than work-
ing with individual pixels, each image is over-segmented into
small, regular superpixels by using the entropy rate algorithm
which is known to preserve image structures [10]. We use
superpixels for practical reasons. On the one hand, they yield
more meaningful representation than do pixels because of
their larger support, on the other hand, they are expected to
speed up inference processing. The goal is to assign each
superpixel either to the road class or to the background one.
To this end, we first extract local and global features from
images. Then, we construct a multi-image graph connecting
superpixels based on their appearance similarity and spatial
relationships. This graph represents intra-image as well as
inter-image dependencies between superpixels.

2.1. Local/global features

Concerning local features, we compute a set of 3 color and
4 shape features to describe respectively the visual appear-
ance and the geometric structure of each superpixel. More
precisely, color is represented by the means of the Lab-color
at each superpixel. Four shape features are also considered
namely the extent ex, the aspect ratio ar, the circularity ci

and the convexity co scores defined as follows:

ex =
A
AB

, ar =
ℓ

L
, ci =

4πA
P2

, co =
A
Ac

(1)

where A, AB , ℓ, L, P and Ac denote respectively the super-
pixel area, the area of its bounding box, the lengths of mi-
nor and major axes of the ellipse that has the same normal-
ized second central moments as the superpixel, its perime-
ter and its convex hull area. These simple shape features
serve as measures of how circular or elongated the superpix-
els are. Structures of road superpixels should be elongated
whilst other non-road superpixels are more circular. Stacking
all the features yields a 7-dimensional descriptor Dm

i for each
superpixel xm

i in each image Im. Then, we evaluate the sim-
ilarity between any couple of superpixels (xm

i , xm′

j ) by the
squared Mahalanobis distance to account for the correlations
between local features:

D
(
xm
i ,x

m′

j

)t

=
(
Dm

i −Dm′

j

)t

Σ−1
(
Dm

i −Dm′

j

)
(2)

where Σ is the covariance matrix estimated on the image set.
As global features, for every Im in I, we extract the GIST
descriptor Gm [11] and, the 3D color histogram Hm

c . The
GIST descriptor represents the dominant spatial structure of
a scene and has recently received increasing attention in the
context of scene recognition. The similarity between images
Im and Im

′
is assessed by the sum of the squared Euclidean

and chi-squared distances, the latter being widely employed
to measure the similarity between normalized histograms:

K
(
Im,Im

′
)
= ∥Gm −Gm′

∥2 + χ2
(
Hm

c ,Hm′

c

)
. (3)

2.2. Multi-image graph

Considering the spatial consistency and appearance similar-
ity between superpixels, we construct a multi-image graph
G = ⟨V, E⟩. The set of vertices V = {xm

i }i∈[1,Nm],m∈[1,M ]

consists of
∑M

m=1 Nm superpixels obtained from all images
where Nm denotes the number of superpixels in Im. The set
E of connections between superpixels capture their appear-
ance similarity and spatial relationships. More precisely, each
superpixel xm

i is connected to its adjacent neighbors Nm
i to

encode spatial dependencies, as for a single-image segmenta-
tion [12,13]. In order to incorporate long-range dependencies
and exploit inter-image information, we should ideally con-
nect all the superpixels between all the images, but this would
produce an overly complex model. For the sake of simplic-
ity, we only keep similar superpixels connections. More pre-
cisely, we first find for each image Im its q ≃ M/2 most
similar images according to the image similarity metric K.
Noting that we can set q equal to a given small constant for
a large image set. Furthermore, we retain for each superpixel
its p=10 most similar superpixels in one image to keep a bal-
anced contribution of the q images. Finally, each superpixel



{xm
i } is connected to only k = p × q/2 most similar super-

pixels in these q images, according to the superpixel simi-
larity metric D. It is worth noting that this graphical model
construction is inspired from [14] where a multi-image model
was first used to jointly estimate the labels of superpixels over
the weakly supervised training set as well as the parameters
of appearance models for the semantic classes. Then, this
advanced model was applied to label superpixels of one new
test image. In contrast, in our case, we address the problem
of recovering the labels of superpixels in multiple test images
without any training images. Compared to [15], we avoid
dense correspondences between pixels by measuring similar-
ities between larger region supports as superpixels.

3. JOINT ROAD NETWORK EXTRACTION
FORMULATION

We propose a new probabilistic framework for the joint ex-
traction of roads, i.e. symmetric elongated objects surrounded
by a dominant background. We define a suitable pairwise
CRF model over the resulting multi-image graph G. Our goal
is to compute the binary masks B =

{
b1, . . . ,bM

}
where

bmi = 1 indicates road, and bmi = 0 indicates background at
superpixel xm

i in Im. Likewise [14,15], the optimal labelling
corresponds to the minimization of the following global en-
ergy function E which defines this CRF model over I:

E(B) =

M∑
m=1

∑
xm
i ∈Im

[Φm(bmi )+λint

∑
xm
j ∈Nm

i

Ψm
int

(
bmi , b

m
j

)
+ λext

∑
xm′
j ∈Km

i

Ψmm′

ext

(
bmi , b

m′

j

)
], (4)

where the Φm, Ψm
int and Ψmm′

ext are potentials, Nm
i are the

spatial neighbors of superpixel xm
i in Im and, Km

i are its k
nearest neighbors in other images. The unary potential Φm re-
flects the visual properties of the superpixel xm

i and represents
its likelihood to be road or background. Since visual appear-
ance is often ambiguous at the superpixel level, we propose
to regularize the objective function E by two additional pair-
wise potentials Ψm

int and Ψmm′

ext . Note that pairwise potentials
have also been used in other tasks such as the segmentation of
textured images [16]. In our case, Ψm

int aims at strengthening a
consistent labelling between adjacent superpixels in the same
image Im whereas Ψmm′

ext makes the labelling to be consis-
tent between images Im and Im

′
by encouraging connected

superpixels to take the same label.

3.1. Unary potentials

The unary potential measures how well the local apparence of
a superpixel xm

i matches the label bmi . We define it as a linear

combination of three terms:

Φm(bmi )= −λC log p
(
bmi ; Cm

i ,ΘC
)

−λS log p
(
bmi ;Sm

i ,ΘS
)
+ λSyΦ

m
Sy
(bmi )

where p
(
bmi ; Cm

i ,Θ
C
)

is the posterior probability of xm
i be-

longing to the class bmi given its color descriptor Cm
i , accord-

ing to the common color appearance model of this class. This
model is shared among all images to account for the wide
intra-class appearance variability. More precisely, we model
each class road/background using a full-covariance Gaussian
Mixture Model (GMM) of Nc = 3 components in the color
feature space as the GMM has been successfully applied to
model color appearance of objects [17]. Hence, the first term
can be easily derived. During the superpixel assignment, each
color appearance model is used to assess how fits a superpixel
to one class. During the class modelling, each color appear-
ance model is updated by learning from the superpixels allo-
cated to the class (see Subsec. 3.3).
The second term measures how well the shape appearance
Sm
i of xm

i matches bmi , according to the joint boosting classi-
fier [18] parameterized by ΘS . We take its outputting poste-
rior probabilities p

(
bmi ;Sm

i ,ΘS
)

to define the second unary
term. Note that the joint boosting classifier is trained on-
line over shape descriptors of the road segments and back-
ground estimation of I. Joint boosting explicitly learns to
share features (i.e. weak classifiers) across classes. It is ef-
ficient for detecting object classes in cluttered scenes [18].
Indeed, many fewer features are needed to achieve a desired
level of performance than if weak classifiers were learned in-
dependently. Besides, the features selected by independently
trained classifiers are often specific to the object class whereas
the features selected by the jointly trained classifiers are more
generic features. Furthermore, constructing independent dis-
tributions for color and shape makes the model robust against
challenging cases where the road segments and background
have a similar appearance. When one of the cues (color,
shape) is not enough discriminative, we rely on the other to
prohibit one distribution to leak into the other.
Finally, the third term in (5) is introduced to reflect the sym-
metric aspect of roads. Given the probability of symmetry
map Sm [19] for each image Im, we can directly define:

Φm
Sy
(bmi )=

{
− logSm(xm

i ) bmi =1
β bmi =0

(5)

where β is a constant parameter for adjusting the likelihood
of background superpixels. Decreasing β makes every super-
pixel more likely to belong to the background, thus resulting
a more accurate estimation of the road class. Sm is the out-
putting posterior probability of the symmetry axes detector,
introduced in [19]. This detector focuses on ribbon-like struc-
tures, i.e. contours marking local and approximate reflection
symmetry. As the symmetry cue is useful in road network
extraction, as shown in Fig. 2, we exploit it in three ways:



Sm is first used as a location prior of road segments into the
unary potential, detected center lines are considered as seeds
at the initialization; and pairwise costs for the CRF model are
finally adjusted according to Sm as it will be explained in the
next subsections.

3.2. Pairwise potentials

The masks {bm} should be spatially consistent within each
image structure. Indeed, along homogenous road, feature
vectors are very similar and close to the mean. Thus, we
use a Gaussian kernel exp−D(xm

i , xm
j ) defined over similar-

ity measures D to satisfy this smoothness constraint. Road
segments have also linear structure with limited and slowly
varying curvature. We use here again a Gaussian kernel
exp−|φm

i −φm
j |2/σ2 to enforce curvature consistency of

road segments. ∆φm
ij = |φm

i −φm
j |2 is the squared dominant

orientation deviation between adjacent superpixels. Further-
more, we integrate the average of probabilities of boundary
Pbmij along the boundary between adjacent superpixels to
encourage segmentation aligned with the images gradients.
As aforementioned, we enforce pairwise costs for superpix-
els belonging at symmetric axes to have the same label. By
combining all the considered pairwise costs, an intra-image
pairwise potentialΨm

int

(
bmi , b

m
j

)
= [bmi ̸= bmj ]g

(
xm
i , xm

j

)
, de-

fined between adjacent superpixels xm
i , xm

j in Im is obtained:

g
(
xm
i , xm

j

)
=

{
λr if center line

Pb
m

ij exp
−D(xm

i ,xm
j )|φ

m
i −φm

j |2

σ2 otherwise.
(6)

where [bmi ̸= bmj ] = 1 if bmi ̸= bmj otherwise 0, Pb
m

ij =
1 − Pbmij , and λr is a constant parameter for adjusting the
contribution of center line cliques. Hence, we reduce the over-
smoothing of thin structures as road segments.
The inter-image smoothness term is defined to promote con-
nected superpixels {xm

i , xm′

j } to take the same label if their
appearance similarity is high:

Ψmm′

ext

(
bmi , b

m′

j

)
= [bmi ̸= bm

′

j ] exp−D(xm
i , xm′

j ). (7)

This inter-image pairwise potential allows to strengthen the
consistency of the labelling between images.

3.3. Optimization

Minimizing the whole energy E in (4) reduces to maximize
the joint posterior probability of superpixel labels and appear-
ance model parameters Θ, given the observed features. As
in [15], we resort to an iterative algorithm that alternates be-
tween model parameter estimation and binary mask B esti-
mation until convergence. Note that for given parameters Θ,
E is submodular and so can be efficiently minimized by the
graph-cuts algorithm [20]. In contrast, when the labelling B
is fixed, the GMM parameters can be estimated using a stan-
dard EM algorithm. The later alternates between performing

an expectation step, which creates a function for the expecta-
tion of the log-likelihood evaluated using the current estimate
for the parameters, and a maximization step, which computes
parameters maximizing the expected log-likelihood found on
the expectation step. We initialize Θ by exploiting the de-
tected center lines from the symmetry map Sm to extract au-
tomatically road/background seeds (Fig. 2). With these initial
seeds, initial labelling is obtained by the k-means algorithm.

Fig. 2. (a) Superpixels. (b) Symmetry map. (c) Detected center
lines. (d) Detected road seeds.

4. EXPERIMENTAL RESULTS

We validate our approach on high resolution (1m/pixel) satel-
lite images of developed suburban scenes. Figure 3 illustrates
road extraction results obtained by both independent (Ind-
CRF for M = 1) and Joint CRF (JCRF for M > 1) models.
Both models perceptually produce higher quality segmenta-
tions than the baseline k-means since they exploit contextual
interactions and more flexible representation of prior knowl-
edge. It is also observed that the joint model outperforms
significantly the independent model due to the sharing of in-
formation between images. It is important to note that our
intermediate models achieves good performance without any
post-processing scheme, e.g. filling gaps between detected
road segments and removing small non-road regions. In most
of the literature, the network structure of roads is introduced
only after detection with a heuristic post-processing scheme.
Indeed, we compare the proposed method with two state-of-
the-art techniques, those of Tuncer [5] and Mokhtarzade et
al. [6]. We have discarded the method described in [7] be-
cause it includes a heuristic post-processing scheme. It can
be observed that the results of our method, given in Fig. 4 are
better than those approaches and are quite close to the ground
truth. Overall, the joint model clearly extracts the road net-
work most faithfully.

5. CONCLUSION

In this paper, we have formulated a powerful CRF model for
jointly extracting road networks from a set of high resolution
satellite images. The proposed method performs promising
segmentations due to suitable unary and pairwise potentials.
In future work, we plan to incorporate additional higher-order
potentials in order to capture the long-range structure of roads
and thus to fill gaps between road segments. We also plan to
extend the data description by other discriminative cues to



deal with urban scenes, where roads are affected by occlu-
sions, shadows, cars, etc.

Fig. 3. (a) Three satellite images of developed suburban scenes. (b)
Hand-drawn road maps. (c), (d), (e) Results of respectively k-means,
IndCRF and JCRF (M = 9) methods.
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