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ABSTRACT

A time encoding of a random signal is a representation of this

signal as a random sequence of strictly increasing times. The

goal of this paper is the rule for testing the mean value of a

Gaussian signal from asynchronous samples given by the In-

tegrate and Fire (IF) time encoding. The optimal likelihood

ratio test is calculated and its statistical performance is com-

pared with a synchronous test which is based on regular sam-

ples of the Gaussian signal. Since the IF samples based de-

tector takes a decision at a random time, the regular samples

based test exploits a random number of samples. The time

encoding significantly reduces the number of samples needed

to satisfy a prescribed probability of detection.

Index Terms— Likelihood ratio test, Time encoding,

Random sampling, Integrate and fire sampler.

1. INTRODUCTION

A time encoding [1] of a random signal x(t), t ∈ R, is a

representation of x(t) as a random sequence, called a pulse

train, of strictly increasing times (tk), k ∈ N, where R and

N denote the set of real numbers and non-negative integers.

Time encoding is a very relevant technique for dealing with

asynchronous transmission and processing of signals. The re-

newed interest in asynchronous processing of signals is due to

applications where low energy consumption and continuous-

time processing are essential: electronic circuits [1], biomedi-

cal implants [2], sensor networks [3] and asynchronous event-

based cameras [4] among others. Asynchronous processing is

also interesting in the continuous time signal processing [5,6].

Many models [7] exist for encoding a signal in the time

domain: level crossing sampler [8], the Integrate and Fire (IF)

sampler [9] and the sigma-delta converter [10] among oth-

ers. The traditional motivation for using time-based encoding

schemes relies on the simplicity of their hardware implemen-

tation which are promising [11, 12]. Despite this strong mo-

tivation, studying the benefits of time encoding is still in its

infancy. Hence, this paper proposes to evaluate the interest of
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time encoding for deciding between two hypotheses. In such

a context, the decision rule is typically based on asynchronous

samples produced by a low energy sensor. This paper deals

with the well known IF time encoding which remains one of

the most used techniques. Its use as a sampling framework

has only recently been investigated [1, 13–15]. Most efforts

in the literature have been devoted towards the design of re-

construction algorithms [1,13,16,17] for bandlimited signals.

Some first attempts for classification of pulse trains based on

electrophysiological recordings is made in [9, 14, 18]. The

comparison between IF sampling and standard regular sam-

pling for deciding between two hypotheses is challenging.

This paper proposes three contributions. First, the detec-

tion problem is stated as a statistical test between two hy-

potheses. Each hypothesis corresponds to a random signal

x(t), completely characterized by its mean m, which is sam-

pled by the IF sampler. Second, the statistical performance of

the proposed test is calculated. It is shown that the test uni-

formly maximizes the probability of detection whatever the

mean m of the random signal x(t), provided that this mean is

increasing from the first hypothesis to the second one. Third,

the proposed test, called the IF test, is theoretically compared

to the Regular Samples (RS) test which is based on regular

samples of the input signal. Since the decision time of the

IF test is random (it depends on the moment when the pulses

are collected), the RS test exploits a random number of reg-

ular samples, which requires a specific attention. It is shown

that IF sampling can save energy within this ideal theoretical

framework.

The paper is organized as follows. Section 2 describes the

IF sampler and the statistical pulse trains. Section 3 derives

the optimal test based on the pulse train under a constrained

false alarm probability. Section 4 theoretically compares the

IF test and the RS test. Section 5 proposes a numerical study.

Finally, Section 6 concludes this paper.

2. INTEGRATE AND FIRE TIME ENCODING

The adaptive IF time encoding typically takes place within the

sensor. The sampling information is sent to a decision center

which takes the decision from the whole family of sensors.
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Fig. 1. Non-Leaky Integrate and Fire model within the sensor.

An input signal x(t) for t ≥ 0 is integrated until a positive

threshold δ > 0 is reached, at which point an output pulse is

generated and the integrator is reset to zero. This process is il-

lustrated in Fig. 1. The output signal B(t) of the IF integrator

satisfies the linear stochastic differential equation

dB(t) = mdt+ σ dW (t) (1)

where W (t) is a standard Brownian motion. Hence, B(t) is

a Brownian motion with the drift m and the diffusion coef-

ficient σ. The drift m represents the mean intensity of the

input signal x(t). Without loss of generality, it is assumed

that m > 0. If not, a positive bias is added to dW (t) in order

to obtain a positive drift m. Hence, the delay for generating

a pulse corresponds to the first passage time of B(t) for the

level δ:

D = inf{t > 0 : B(t) ≥ δ}. (2)

It follows that the IF sampler generates a sequence of pulses

whose interarrival delays D1, . . . , Dk,. . . are distributed ac-

cording to the probability density function (pdf) of D. The

pdf of D is the well-known [19] Inverse Gaussian (IG) distri-

bution IG(µ, λ) defined by

f(d;µ, λ) =

(
λ

2πd3

)1/2

exp

(−λ(d− µ)2

2µ2d

)
(3)

for d > 0, where µ > 0 is the mean and λ > 0 is the shape

parameter. The variable d represents the delay between two

pulses; it corresponds to the realizations of random variables

{Di}i≥1. The time encoding of the input signal corresponds

to the random times T0, T1,. . . where T0 = 0 is the time start-

ing point and Ti = Ti−1 + Di. The parameters of the IG

distribution are µ = µ(m) = δ/m and λ = δ2/σ2.

3. OPTIMAL TEST BASED ON THE PULSE TRAIN

Let us assume that the input signal x(t) has two possible mean

values m1 and m2 satisfying m2 > m1. The goal is to test

the mean value of the signal, either m1 or m2, when σ is

known. Let us consider a sequence of n encoded times tn1 =
(t1, . . . , tn) where ti is a realization of the random variable

Ti. This sequence is statistically equivalent to the interarrival

delays dk = tk − tk−1 where t0 = 0. From Section 2, it

follows that the detection problem can be formulated as the

choice between the two hypotheses

H1 :
{
Dk ∼ IG(µ1, λ) , k = 1 . . . , n

}
,

H2 :
{
Dk ∼ IG(µ2, λ) , k = 1 . . . , n

}
, (4)

where µi = µi(δ) = δ/mi and µ1 > µ2. The parameter λ
is known since δ and σ are known. A detailed introduction to

statistical hypotheses testing theory is given in [20, 21]. Let

Kα = {φ : Pr1(φ(D
n
1 ) = H2) ≤ α} (5)

be the class of tests of level α with an upper-bounded false

alarm probability 0 < α < 1, where Pri(·) stands for Dn
1 be-

ing generated by the distribution IG(µi, λ). The probability

of correct detection, also called the power, is

βφ = Pr2(φ(D
n
1 ) = H2).

The optimal test for testing H1 and H2 in the class Kα, i.e.

the test which maximizes the power under a constrained false

alarm probability, is given by the well known Likelihood Ra-

tion Test (LRT). The LRT, which is called the IF test in the

following, is given by [22, 23]

φ∗(dn1 )=

{
H1 if Λ(dn1 )=

∑n
k=1 log

f(dk;µ2,λ)
f(dk;µ1,λ)

≤ h,

H2 else,

where h is a threshold. A short calculation shows that the

LRT can be rewritten as

φ∗(dn1 )=φ∗(tn1 )=

{
H1 if Λ∗(dn1 )=

∑n
k=1 dk = tn ≥ h∗,

H2 else,
(6)

where h∗ is a threshold such that φ∗ ∈ Kα. From the basic

properties of the IG distribution [24], Λ∗(Dn
1 ) is distributed

as IG(nµi, n
2λ) under Hi. Let Fi,n(·) be the Cumulative

Distribution Function (cdf) of IG(nµi, n
2λ) and F−1

i,n (·) its

inverse function. Then, the threshold h∗ satisfies

h∗ = F−1
1,n(α)

and the power βφ∗ = Pr2(Λ
∗(Dn

1 ) > h∗) of the test φ∗ is

βφ∗ = βφ∗(δ) = F2,n(h
∗) = F2,n(F

−1
1,n(α)) (7)

where βφ∗(δ) is a function of δ through the parameters

nµi = n
δ

mi
=

δ̃

mi
and n2λ = n2 δ2

m2
i

=
δ̃2

m2
i

. (8)

It is straightforward to verify that the power function βφ∗(δ)
is an increasing function of δ and/or n. Hence, changing the

number of IF pulses n used by the test or the threshold δ has

the same effect. For this reason, for the numerical experi-

ments, it is assumed that n = 1 and only the value of δ varies.

From (6), it is interesting to note that the LRT takes its

decision by comparing the last encoded time tn to a threshold.

Since the decision function tn does not depend on H2 and

h∗ depends only on H1 and α, the test is Uniformly Most

Powerful (UMP), i.e. it maximizes the probability to detect

the value m2 provided that m2 > m1 [20].



4. COMPARISON WITH REGULAR SAMPLING
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Fig. 2. Random decision times t1, t2 and t3 for both the IF and

RS tests. The regular sampling times are t̂1, t̂2, t̂3, t̂4 and t̂5.

At time ti, the two tests do not necessarily exploit the same

number of samples.

The IF test φ∗(tn1 ) takes a decision at random time tn by

using n encoded times tn1 . Let us compare the performances

of this test at a time tn with respect to an optimal test based on

regular samples, called the RS test. Let ∆ > 0 be the regular

sampling period and t̂k = k∆ be the sampling times. At time

tn, the regular sampling provides n̂ = ⌊tn/∆⌋ ∈ N samples

where ⌊a⌋ denotes the greatest integer less than or equal to

a (see Fig. 2). This is the realization of the random variable

N̂ = ⌊Tn/∆⌋ which admits the distribution:

pi,n(n̂) = Pri(N̂ = n̂) =

∫ (n̂+1)∆

n̂∆

f(u;nµi, n
2λ)du (9)

for n̂ ∈ N. Since N̂ may be equal to 0 if Tn < ∆, the RS

test for n̂ = 0 samples corresponds to a coin flip with the

probability α to decide H2.

Let us assume that n̂ regular samples, denoted z1,. . . , zn̂,

are measured at time tn. The regular samples are obtained

by using a first-order integration sampler which integrates the

signal (1) over a time interval of length ∆ and normalizes the

sample by
√
∆. Hence, the regular samples represent the real-

izations of the Gaussian random variables Z1, . . . , Zn̂, where

Zk ∼ N (mi

√
∆, σ2). In the field of decentralized sequential

detection, such a sampling model has been studied in [25].

The RS test has to decide between

H1(N̂ = n̂) :
{
Zk ∼ N (m1

√
∆, σ2) , k = 1 . . . , n̂

}
,

H2(N̂ = n̂) :
{
Zk ∼ N (m2

√
∆, σ2) , k = 1 . . . , n̂

}
, (10)

given the number N̂ = n̂ of samples, at time tn. The LRT

between H1(N̂ = n̂) and H2(N̂ = n̂) is [20]:

φ̂(zn̂1 )=

{
H1(N̂ = n̂) if Λ̂(zj1)=

1√
n̂∆

∑n̂
k=1 zk ≤ ĥn̂,

H2(N̂ = n̂) else,
(11)

where ĥn̂ is given by ĥn̂ = m1

√
n̂ + σΦ−1(1 − α) and the

conditional power, given that N̂ = n̂, is

βφ̂(N̂ = n̂)=Pr2

(
Λ̂(Z n̂

1 ) > ĥn̂|N̂ = n̂
)

=1−Φ
(
(m1−m2)

√
n̂∆+ σΦ−1(1−α)

)
(12)

where Φ(·) is the cdf of the standard normal distribution. The

power of the test φ̂ obviously depends on the realization N̂ =
n̂ of the number of samples at time tn. This test is UMP for

all m2 > m1 [20]. In order to compare the IF test and the RS

test, it is necessary to define the mean power of the RS test

with respect to the distribution of N̂ . Hence, let αφ̂(n, δ) and

βφ̂(n, δ) be the mean probability of false alarm and the mean

power, respectively, of the RS test when the IF test deals with

n samples at time tn:

αφ̂(n, δ) =

∞∑

n̂=0

p1,n(n̂)α = α, (13)

βφ̂(n, δ) =

∞∑

n̂=0

p2,n(n̂)βφ̂(N̂ = n̂), (14)

where pi,n(n̂), given in (9), depends both on n and δ.

5. NUMERICAL EXPERIMENTS

This section proposes a numerical comparison of the IF test

and the RS test when m1 = 1, m2 = 4, σ = 2 and the

prescribed false probability is α = 10−3.

Fig. 3.(a) gives the power function βφ∗(δ) and βφ̂(δ) with

respect to the IF threshold δ when ∆ = 1 ms. As under-

lined in Section 3, the IF test deals with only n = 1 sample

obtained at time t1. The IF test is more powerful than the

RS test when δ is large, which corresponds to a high proba-

bility of detection. Otherwise, the RS test is more powerful.

Consequently, the IF test seems more interesting in practice

since a high power is often targeted. Fig. 3.(b) gives the mean

waiting delay of decision (in milliseconds) for each test. For

the IF test, the mean waiting delay of decision corresponds to

the mean time necessary to obtain n = 1 sample from the IF

sampler. The RS test exploits a random number of samples

N̂ = n̂, hence its mean waiting delay of decision is ∆N i(δ)
where the mean number of samples N i(δ), depending on the

true hypothesis Hi, is given by

N i(δ) =

∞∑

n̂=0

n̂ pi,n=1(n̂) ≈ µi(δ)/∆. (15)

The approximation∆N i(δ) ≈ µi(δ) comes from the fact that

pi,n is obtained by quantizing the IG distribution. When ∆ is

small, the mean waiting delays of the two tests are almost the

same.

Fig. 4.(a) gives the power function βφ∗(δ) and βφ̂(δ) with

respect to ∆ for three values of δ: 10, 20 and 30. Since δ
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Fig. 3. The power function (a) and the mean delay (b) of the

IF test and the RS test with respect to the IF threshold δ.

is fixed for each curve, the power of the IF test is constant.

From (12), the power of the RS test clearly depends on ∆. If

∆ is too large, there is no regular sample at time t1, hence the

power of the RS test is α. As ∆ is decreasing, the power of the

RS test increases (as the number of regular samples becomes

larger) but the number of transmission always increases since

the sampling rate is proportional to 1/∆.

Finally, let us compare the energy consumption of each

test. It is assumed that each sample is coded with q bits

and each bit is transmitted with a constant energy-per-bit Eb

(in joule). This energy consumption model is simple but the

main goal is overall to show the advantages of the IF sam-

pling within an ideal framework. The IF test uses only one IF

sample to take a decision. Hence, the energy consumption of

the IF test is

CIF = q Eb

which corresponds to the transmission of q bits. Contrary to

the IF test, the RS test exploits a mean number of samples

N i(δ) given by (15). Hence the mean energy consumption of

the RS test is given by

CRS = q Eb N i(δ) ≈ q Eb
µi(δ)

∆
= q Eb

δ

mi∆
(16)

and it depends on the true hypothesis Hi. The difference be-

tween CIF and CRS is due to the ratio δ/(mi∆). Fig. 4.(b)
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Fig. 4. Theoretical (a) power and (b) energy cost of the IF test

and the RS test as a function of ∆ for δ = 10, 20, 30.

shows the energy costs CIF and CRS as a function of ∆ by

assuming that Eb = 0.1 and q = 32. The IF test has the ad-

vantage of a constant cost whatever δ and the true hypothesis

Hi. Increasing the value of ∆ reduces the energy cost CRS

but it involves a loss of detection performance as underlined

in Fig. 4.(a).

6. CONCLUSION

This paper studies the optimal UMP test, called the IF test,

to detect the mean level of a Gaussian signal from non-leaky

Integrate and Fire (IF) samples. This test is compared to the

UMP test, called the RS test, based on regular samples regu-

larly spaced in time. The statistical performances of both the

tests are explicitly calculated under a constrained prescribed

false alarm probability. It is shown that the IF test can have

a lower energy cost than the RS test while preserving the de-

tection power. The proposed results are derived within a the-

oretical framework. Future work will concern the extension

of this approach to real pulse-based systems.
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