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Universidad Politécnica de Madrid
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ABSTRACT
Cognitive radio represents a promising paradigm to further
increase transmission rates in wireless networks, as well as to
facilitate the deployment of self-organized networks such as
femtocells. Within this framework, secondary users (SU) may
exploit the channel under the premise to maintain the quality
of service (QoS) on primary users (PU) above a certain level.
To achieve this goal, we present a noncooperative game where
SU maximize their transmission rates, and may act as well as
relays of the PU in order to hold their perceived QoS above
the given threshold. In the paper, we analyze the properties
of the game within the theory of variational inequalities, and
provide an algorithm that converges to one Nash Equilibrium
of the game. Finally, we present some simulations and com-
pare the algorithm with another method that does not consider
SU acting as relays.

Index Terms— Cognitive radio, variational inequalities,
game theory, self-organized networks, small cells

1. INTRODUCTION

Encouraged by an increasing demand, wireless data services
have experienced a tremendous growth in the past years, and
more is expected to come due to a greater proliferation of
user terminals, transmission requirements, and ubiquitous
services. For these reasons, self-organized networks that
adapt and configure themselves in a changing environment
constitute a desirable deployment strategy for operators to in-
crease transmission rates and coverage, while reducing their
installation and maintenance costs.

The cognitive radio (CR) paradigm intends to combine
the present deployed networks with the future self-organized
networks, by establishing a hierarchy on the data services
offered to licensed and unlicensed users. While the macro-
cell networks are set to provide sufficient quality of service
(QoS) to the licensed or primary users (PU), the unlicensed
or secondary users (SU) may exploit the underused chan-
nels without disturbing the PU transmissions. This requires
some knowledge of the transmitting channels, specially some
measure or estimation of the interference caused to the PU
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(or QoS perceived), in order to maintain the service unobtru-
sively. Several techniques for the SU have been proposed to
accomplish this, namely interweaving, underlay and overlay
transmissions [1, 2, 3], which we introduce next.

The interweaving technique consists on the SU sensing
the spectrum holes in the different subchannels, and avoid
causing any interference to the PU. The main difficulty of this
scheme resides in sensing these gaps accurately, and in pre-
dicting the next PU transmission slots. Therefore, it becomes
difficult to implement in highly dynamic environments, where
the SU communications pair would require to be very precise
and agile in switching channels.

On the other hand, in the underlay scheme the SU trans-
mit in the same bands as the PU while satisfying some QoS
constraints. This scheme is also transparent to the PU, which
just regards the interference as additive noise without affect-
ing communication. However, it has the difficulty for SU to
work in low SNR regimes and very short range communi-
cations, in order to keep the interference temperature on PU
under given thresholds.

Finally, the overlay scheme presents itself as a general-
ization of the underlay scheme, where SU act as relays for the
PU communication (increasing their SINR), and are therefore
allowed to further augment the interference level caused to
these PU. The technique comes however at the cost of greater
integration among SU and PU, at least in order for the PU to
decode the relayed message. See [1] for techniques to accom-
plish this. Similar approaches were also proposed in [4, 5],
where the PU leased their own spectrum in exchange for the
helping relays.

Within the overlay paradigm, we present a monotone
game played among SU that maximize the achievable in-
formation rate, while satisfying some QoS constraint on the
PU, and where the SU forward information dynamically act-
ing as relays. We study the existence of Nash Equilibrium
(NE) solutions, and provide an algorithm that converges to
one of these equilibriums. Our contributions on this paper
are mainly the generalization of previously studied underlay
techniques to the overlay scheme, and showing the capacity
gains when comparing both techniques.

Regarding previous work, we build upon the ideas intro-
duced in [2] which proposed a potential game among SU for
both underlay and overlay schemes. In their approach, au-
thors introduce a performance function for each player that
minimizes interference, but without explicitly regarding the
maximization of a capacity formula. Additionally, the inter-
ference levels reached at the PU are not constrained below a



given level, but rather have to be found through simulation
after specifying some weighting parameters. To address this
matter, in our approach we explicitly impose feasibility con-
straints, and maximize capacity on the available subcarriers.

We also base our work in the framework presented in [6]
and previously developed through different publications ap-
plied to CR scenarios [7, 8, 9], which expand the analysis
tools to study monotone games through variational inequali-
ties (VI). In our presentation, we adapt our problem formu-
lation to this theory, and analyze its convergence. Further-
more, we compare our simulation results with the algorithm
presented in [7] with shared constraints (underlay paradigm),
showing the achievable performance gain in high-interference
scenarios, when adopting an overlay transmission scheme.

Finally, other recent related work is the one proposed
in [10] where authors present a reinforcement learning al-
gorithm to solve an altruistic game (team game) and a com-
petitive game. Here, the learning process can rely on a
formulation with full channel knowledge (all players know
all strategies and channel state), or with limited knowledge
(players only have access to their utility function). In our
algorithm (as well as in [6, 7, 8]), only local information is
required, as well as some collaboration from PU indicating
how saturated the interference constraints are.

In Section 2 we introduce the system model, the game for-
mulation for SU, and formulate the equivalence to VI. Then,
within the VI theory we analyze the existence of solutions and
properties. In Section 3 we reformulate the objective func-
tions, and describe an algorithm to find a solution of the game.
Finally, on Sections 4 and 5 we present some simulations and
the conclusions. During the exposition of the problem we
will assume some knowledge of VI and game theory. As def-
initions of NE, VI solutions, monotonicity of VI and games,
P-matrix properties, and uniformly P-functions, we have used
the ones presented in [6].

2. SYSTEM MODEL AND PROBLEM
FORMULATION

We present here a CR system with P primary users andQ sec-
ondary users (players), who transmit in N -parallel Gaussian
interference channels. Each SU represents a transmitting pair
who tries to maximize their achievable data rate, while PU
have assigned transmission channels and QoS requirements.
We denote here the channel (cross)transfer coefficients for SU
as HSS

ij (k) indicating that this is the (squared) channel gain
from the j SU transmitter to the i SU receiver on subcarrier
k, and we indicate HPS

pj (k) for the transfer function from the
j SU transmitter to the p PU receiver on subcarrier k. The SU
transfer coefficient is therefore referred to as HSS

ii (k). The
channel is AWGN and we express the noise variances with
σ2
i (k). Note that each noise term may include any undecod-

able signal of PU on SU, and this term will not vary during
the resolution of the game since PU do not participate in the
power allocation algorithm.

The objective of the game is to find the corresponding
power allocation scheme for each player, which engulfs both
the power dedicated to the individual data, as well as the re-
layed transmission. We will refer to the former for user i as

{pi(k)}Nk=1, and we will indicate the later as {ppi (k)}
N,P
k=1,p=1,

where every SU may relay the data of one, or several PU.
Additionally, we will use the vector notation of the previous
magnitudes as pi = (pi(k), (p

p
i (k))

P
p=1)

N
k=1, we will refer to

the strategies from other users with p−i = (pj)
Q
j=1,j 6=i, and

to the strategies of all users with p = (pi)
Q
i=1. The achievable

transmission rate is then given by the capacity formula,

ri(pi,p−i) =
N∑
k=1

log

(
1 +

HSS
ii (k)pi(k)

σ2
i (k) +

∑
j 6=iH

SS
ij (k)pj(k)

)
(1)

with total power constraint
∑
k(pi(k) +

∑
p p

p
i (k)) ≤ Pmax

i ,
and limiting values 0 ≤ pi(k), p

p
i (k) ≤ pmax

i (k) for all i and
p. In equivalent form the strategy set is

Pi ,
{
pi ∈ RN+ |1Tpi ≤ Pmax

i , pi ≤ pmax
i

}
. (2)

where the SU transmission and relayed powers are implicitly
included in pi.

In order to satisfy the QoS on every PU, we define a min-
imum capacity threshold bp(k) on every subcarrier where a
transmission takes place, given by

log

(
1 +

Gp(k) +
∑Q
j=1H

PS
pj (k)ppj (k)

σ2
p(k) +

∑Q
j=1H

PS
pj (k)pj(k)

)
≥ bp(k) (3)

where Gp(k) represents the PU joint channel gain and power.
We can find an equivalent expression by manipulating its
terms, getting

gpk(p) =

Q∑
j=1

HPS
pj

(
ap(k)pj(k)− ppj (k)

)
− Ip(k) ≤ 0 (4)

where ap(k) = ebp(k) − 1, and Ip(k) = Gp(k) − ap(k)σ2
p.

Equation (4) is linear, limits the total interference with a
maximum temperature value Ip(k), and is coupled among all
users. Adding these constraints to the feasible region yields:

P̂ , {Pi}Qi=1 ∩ {p | gp(p) ≤ 0, ∀p = 1, . . . , P} (5)

with gp(p) = (gpk(p))
N
k=1.

Now we can present the Generalized Nash Equilibrium
Problem (GNEP) for all SU as Ggnep =

〈
P̂, (ri)Qi=1

〉
,

max
pi

ri(pi,p−i)

s.t. pi ∈ P̂(p−i)
∀i = 1, . . . , Q. (6)

The variational inequality (VI) associated to Ggnep will
allow us to analyze the properties of the game. Defining Fi =

∇pi
ri(pi,p−i), and F = (Fi)

Q
i=1 we can state the following,

Lemma 1. ( from [7]) Let the game Ggnep =
〈
P̂, (ri)Qi=1

〉
and let the variational inequality be defined as VI(P̂,F).
Then, if (p∗, λ∗) is a solution of the VI, so that

0 ∈ Fi(p
∗) +

∑P
p=1 λ

∗T
p ∇pi

gp(p
∗), p∗i ∈ Pi, ∀i

0 ≤ λ∗p ⊥ gp(p
∗) ≤ 0, ∀p

(7)



it is also a solution of Ggnep. We will refer to these points as
variational solutions of the game.

In order to establish the existence of solutions for the VI,
and consequently to the Ggnep, we need to proof monotonicity
of the mapping F on P̂ from the defined VI. We denote the
Jacobian matrix as JF = (Jpj

Fi(p))
Q
i,j=1, with Jpj

Fi(p)
indicating the partial Jacobian matrix with respect to the SU’s
vector pj . Then, using the developed framework to analyze
the structure of VIs from [7], we introduce the following ma-
trix

[JFlow]ij ,

{
infp∈P̂ [JF]ii if i = j

− supp∈P̂ |[JF]ij | otherwise
(8)

which applied to our problem has the following structure,

[JFlow(k)]ij =


1 if i = j and ∂Fi

∂pi(k)

− |H
SS
ij (k)|2

|HSS
jj (k)|2 · innrij(k) if i 6= j and ∂Fi

∂pj(k)

0 if ∂Fi

∂ppi (k)
or ∂Fi

∂ppj (k)

(9)

with innrij(k) ,
σ2
j (k)+

∑
r H

SS
jr p

max
r (k)

σ2
i (k)

. We can now enunci-
ate the following properties:

Proposition 1. Given the game Ggnep and its associated
VI(P̂,F) the following holds
1. Suppose matrix JFlow(k) as given in (9) is positive

semidefinite, then the VI is monotone, and Ggnep is a
monotone GNEP.

2. Because P̂ is closed and compact, the VI and Ggnep have
a nonempty and compact solution set (also convex if con-
dition 1 is satisfied).

Proof. We can apply the theory of NEPs to our GNEP as
stated in Lemmas 4.2, 4.3 in [7] because Assumption 4.3 [7]
is satisfied. Indeed, we have a nonempty, closed and con-
vex subset P̂i for every i, the objective functions are twice
continuously differentiable and concave, and gp(p) is jointly
convex and continuously differentiable. Now, we can affirm
condition 1 is guaranteed by Proposition 5 (a) in [6], and con-
dition 2 by Theorem 8 (a,b) [6].

For the uniqueness of solution of the VI, matrix JF would
be required to be a P-matrix. However, because the Jacobian
is zero on variables ppi (k), JF cannot satisfy the conditions,
and the VI may have infinite NE. Nonetheless, we add a prox-
imal regularizer to analyze the P-properties of the mapping F,
and this will also be useful to guarantee convergence of Algo-
rithm 1. We consider then the modified VI(P̂,F+ τ(I−y)),
where I is the indicator function, y = (yi)

Q
i=1, and yi =

(yi(k), (y
p
i (k))

P
p=1)

N
k=1 is a fixed point so that y ∈ P̂ . Point y

limits the VI to a unique solution, and by updating its value
to a closer NE of the original game as in Algorithm 1, it will
guarantee reaching such a solution. Note that y is instrumen-
tal into attaining a solution, but it doesn’t affect the existence
of multiple NE on the original game (6).

Now, based on [7] we define matrices, ΥS
F and ΥP

F

[ΥS
F]ij ,

{
infp∈P̂ λleast(Jpi(k)Fi(p)), if i = j

− supp∈P̂ ‖(Jpi(k)Fj(p))‖, if i 6= j
(10)

[ΥP
F]ij ,

{
infp∈P̂ λleast(Jppi (k)Fi(p)), if i = j

− supp∈P̂ ‖(Jppi (k)Fj(p))‖, if i 6= j
(11)

where their definition differs in that the partial derivatives of
the Jacobians are relative only to pi(k), or to ppi (k), respec-
tively. Note that the notation λleast means smallest eigenvalue.
The purpose behind these definitions is to determine sufficient
conditions that would guarantee that the VI(P̂,F+ τ(I−y))
is a P-function. Due to the Cartesian structure of the Jacobian
matrix JF, we can affirm that if both matrices ΥS

F and ΥP
F

are P-matrices, then so is the VI.
As analyzed in [6], matrix ΥS

F has the form

[ΥS
F]ij =

1 if i = j

−maxk

{
−H

SS
ij (k)

HSS
jj (k)

· innrij(k)
}

if i 6= j

(12)
and matrix ΥP

F = 0 since the Jacobian is zero on those terms.
Adding a regularizer as intended, ΥS

F,τ1
= ΥS

F + τ1I is a
P-matrix for

τ1 >

max
i

∑
j 6=i

max
k

{
HSS
ij (k)

HSS
jj (k)

· innrij(k)

}− 1

+

(13)
and matrix ΥP

F,τ2
= ΥP

F+τ2I is a P-matrix for τ2 > 0, where
we have split τ = (τi)

2
i=1 to analyze both matrices. We have

used the operator [z]+ = max{z, 0}.
Summing up, τ1 as specified on equation (13) and τ2 > 0

give sufficient conditions for VI(P̂,F + τ(I − y)) to be a
uniformly P-function, so that a unique solution exists on the
modified VI for given y.

3. DISTRIBUTED ALGORITHM

We now reformulate the game Ggnep in a more convenient
form with the feasible region having a Cartesian structure,
so that we can use the decomposition algorithms for Nash
Equilibrium Problems (NEPs) as in [6, 7]. We introduce the
game Gλ(y)

max
pi

ri(pi,p−i)−
∑P
p=1 λ

T
p gp(pi,p−i)

− τ2 ‖ pi − yi ‖2
s.t. pi ∈ Pi

∀i (14)

and furthermore require

0 ≤ λp ⊥ gp(p) ≤ 0, ∀p = 1, . . . , N (15)

where the term τ
2 ‖ pi − yi ‖2 has been added to obtain a

strongly convex optimization problem, where yi is another



point in the feasibility region, and τ has to be big enough to
guarantee P-uniformity, as given in (13).

This formulation allows for a distributed computation for
every player for known coefficients λp, since all variables and
feasible sets are local. The parameters λp can be interpreted
as the price paid by the players for using the maximum al-
lowed interference, which due to equation (15) is nonzero
only when the resources become scarce.

To solve problem (14), the individual KKT conditions
have to be satisfied, therefore

HSS
ii (k)

σ2
i (k)+

∑Q
j=1H

SS
ij (k)pj(k)

− τ1 (pi(k)− yi(k))

−
∑P
p=1 λp(k)H

PS
pi (k)− µi = 0

(16)

−τ2 (ppi (k)− y
p
i )−

∑
p

λp(k)H
PS
pi (k)− µi = 0 (17)

0 ≤ µi ⊥
∑
k

(pi(k) +
∑
p

ppi (k))− P
max
i ≤ 0 (18)

for every user i = 1, . . . , Q. The parameter µi is some water-
level that has to be determined to satisfy condition (18).

The real positive root from (16) is given by

pi(k) =
1
2

(
yi(k)− 1

Hk

)
− 1

2τ

[
µ̃i(k)−

√[
µ̃i(k)− τ1

(
yi(k) +

1
Hk

)]2]pmax
k

0
(19)

which is the same solution as equation (71) in the under-
lay game from [6], and where we have simplified the nota-
tion to Hk =

HSS
ii (k)

σ2
i (k)+

∑Q
j=1H

SS
ij (k)pj(k)

and µ̃i(k) = µi +∑P
p=1 λp(k)H

PS
pi (k) for our problem. The used operator is

defined as [z]ba = min{max{z, a}, b}.
Likewise, relayed powers from (17) are given by

ppi (k) =

[
ypi (k) +

1

τ2

(
P∑
p=1

λp(k)H
PS
pi (k)− µi

)]pmax
k

0
(20)

Based on the Projection Algorithm with variable steps
from [7], we can formulate Algorithm 1 that finds one NE
of (6). Note that on step 2 values y(n) and λ(n)p are held fixed
for the resolution of inner game Gλ(n)(y(n)) (from step 3 till
5), and are later updated for subsequent iterations on step 6.
Algorithm 2 is an inner loop to solve Gλ(n)(y(n)) that deter-
mines the best response of variables {pi(k), {ppi (k)}p}k. Its
structure is based on a bisection algorithm presented in [6],
and considers the relayed powers towards PU. This algorithm
has the novelty of detecting saturated PU constraints, and bal-
ancing the available powers both on maximizing user capac-
ity, and helping to lower the cost of interfering PU.

4. SIMULATIONS

For the simulations we have created a scenario of Q = 10
SU, P = 2 PU and N = 64 subcarriers. The transfer func-
tion for an OFDM channel is determined by a FIR filter of

Algorithm 1 Projection Algorithm
1. Set n← 0

Initialize variables y(n)i (k), yp,(n)i (k), λ(n)p (k), ∀i, p, k.
2. If stopping criteria is satisfied, stop
3. Determine best response of variables pi(k), p

p
i (k) ∀k, i

using Alg. 2, with fixed values λ(n)p , y
(n)
i (k), y

p,(n)
i (k).

4. Update interference prices

λ
(n+1)
p =

[
λ
(n)
p + αngp(p)

]+
, ∀p = 1, . . . , P

5. Repeat from 3 until pi, λp do not vary; Then go to 6.
6. Set n← n+ 1;

Update y(n)i (k)← pi(k), y
p,(n)
i (k)← ppi (k)

Go to step 2.

Algorithm 2 Power allocation for Overlay Wireless Network
1. Choose accuracy level ε.
2. Set µ

i
= 0, and

µi =
[
maxk

{
(Hk + τ1yi(k)−

∑
p λp(k)H

PS
pi (k))

}]+
3. Set µi = (µ

i
+ µi)/2

4. Using (19) and (20) determine pi(k) and ppi (k) ∀k, p
5. If

∑
k(pi(k) +

∑
p p

p
i (k)) ≤ Pmax

i , then µi = µi
otherwise, µ

i
= µi.

6. If µi − µi > ε, go to step 3, otherwise stop.

length L and exponential power profile, with randomly cho-
sen complex Gaussian coefficients which are then normal-
ized, and where the subcarrier coefficients are determined by
the squared samples of the FFT of order N . As simulation
parameters, we have chosen a level of total power transmis-
sion of 10 mW, interference peak level Ip(k) = 0.8mW, and
the joint channel and power gain of PU to Gp(k) = 2mW.
All channel noises have been set to 1 mW. For the SU to
SU channel gain the SNR = E

{
Pmax
i HSS

ii (k)/σ2
i (k)

}
=

5 dB, and for cross-channel gains among different SU INR =
E
{
Pmax
i HSS

ji (k)/σ2
j (k)

}
= 0 dB. Finally step size αn = 0.1,

τ1 has been chosen to satisfy equation (13), and τ2 = 1. In the
following figures we have simulated our algorithm which we
refer to as “overlay”, and the algorithm from [7] with shared
constraints, which we refer to as “underlay”.

In Figure 1 we have represented the convergence speed
given the previously mentioned simulation parameters, and
additionally considering a channel gain from SU to PU of
0 dB for all the cases. We observe that the total sum rate oscil-
lates until it stabilizes, due to temporal violation of the given
constraints on the interference caused to PU. Note, that both
schemes show this behavior, and have similar convergence
speed for the simulated channels.

In Figure 2 we represent the total sum-rate of SU as a
function of the increasing channel gain caused from SU to
PU. We observe that on lower levels of interference the over-
lay and underlay algorithms converge to the same sum-rate,
but as the interference channel gain increases, the underlay
algorithm saturates on a lower sum-rate level so that it does
not violate the given constraints. On the other hand, with the
overlay scheme, the unused power can be employed on relay-
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ing the PU information, and can therefore increase the trans-
mitted information rate.

5. CONCLUSIONS

In this paper we have presented a monotone GNEP which
maximizes the SU transmission rates, while holding the ca-
pacity level of PU above a given value. This was accom-
plished using an overlay scheme, where SU may retransmit
the PU information as a trade-off to increase the interference
level caused. We have analyzed the game through the theory
of VI, and provided a convergent algorithm that allocates the
transmission powers of SU data, as well as the power used
to relay PU information. With our algorithm, we can analyze
the achievable gain for SU when cooperating with PU at the
expense of more integration.

As future work, NE selection could be implemented and
analyzed in the algorithm. Additionally, more realistic infor-
mation could be incorporated to the model, such as SINR re-
quirements on SU to be able to decode and retransmit the PU
data, as well as a more advanced structure of relaying network
among SU.
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