
ROBUST HIGH-RESOLUTION DOA ESTIMATION WITH ARRAY PRE-CALIBRATION

Christian Weiss and Abdelhak M. Zoubir

Signal Processing Group
Technische Universität Darmstadt

64283 Darmstadt, Germany
E-mail: {cweiss, zoubir}@spg.tu-darmstadt.de

ABSTRACT
A robust high-resolution technique for DOA estimation in the
presence of array imperfections such as sensor position errors
and non-uniform sensor gain is presented. When the basis
matrix of a sparse DOA estimation framework is derived from
an ideal model, array errors cannot be handled which causes
performance deterioration. Array pre-calibration via robust
steering vector estimation yields an improved overcomplete
basis matrix. It alleviates the delicate problem of selecting
the regularization parameter of the optimization problem and
improves the performance significantly. Thus, closely spaced
sources can be resolved in the presence of severe array imper-
fections, even at low SNRs.

Index Terms— sparse regularization, array imperfec-
tions, robust DOA estimation, array calibration

1. INTRODUCTION

Sparse regularization is an emerging technique with high-
resolution capabilities for direction-of-arrival (DOA) estima-
tion and source localization problems [1, 2, 3, 4, 5]. However,
an automatic determination of the regularization parameter is
highly non-trivial and the focus of recent research. When the
noise statistics are known, this knowledge can be exploited to
yield proper regularization [6, 7]. One established approach is
the discrepancy principle [1, 8]. For unknown noise statistics,
techniques based on the L-curve [9] have been proposed. In
practice, however, noise is not the only impairment. Limited
fabrication accuracy or external influences introduce model
errors such as gain/phase mismatch or uncertainties in the
sensor locations. These errors lower the quality of the sparse
basis and may result in severe performance deterioration. As
a result, sparse regularization for model errors has been ad-
dressed recently [10]. Also Bayesian techniques have been
reported [11]. Other approaches introduce additional con-
straints into the optimization problem [12] or apply diagonal
loading [13, 14] for increased robustness against incorrect
choices of the regularization parameter. Nevertheless, reso-
lution and accuracy can hardly be improved by controlling
the regularization only. Therefore, we propose the use of

array calibration techniques in combination with sparse reg-
ularization in order to achieve this goal. In the past, efficient
calibration methods such as the projection approach [15] and
improved versions [16] have been presented. They obtain
robust estimates of the perturbed steering vectors which can
significantly improve the quality of the sparse basis. It allows
for high-resolution DOA estimation at low SNRs in the pres-
ence of array imperfections.
Our original contribution is as follows. First, we alleviate
the problem of finding the regularization parameter by using
pre-calibration to obtain a robustified basis matrix for sparse
DOA estimation. Second, we show the high-resolution ca-
pabilities of the combined method and its robustness against
array errors and noise. Third, we compare our proposed
scheme to the conventional case where the sparse basis is
derived under ideal conditions.
The remainder of this article is organized as follows. Sec-
tion 2 introduces the sparse DOA estimation framework. In
Section 3, we demonstrate how a robustified sparse basis is
obtained. Simulation results for performance evaluation are
provided in Section 4 and Section 5 concludes this work.

2. SPARSE SIGNAL MODEL

We follow the sparse signal model presented in [1] which is
briefly reviewed. Consider a uniform linear array (ULA) with
L elements and a spacing of d = λ/2, where λ is the signal
wavelength. Let us assumeK farfield signals uk(t) with pow-
ers σ2

k. The directions of arrival (DOAs) of the correspond-
ing point sources are denoted by θk, k = 1, . . . ,K. If we
discretize the complete angular range into N segments, the
signals {uk(t)}Kk=1 represent the non-zero entries of a sparse
vector s = [s1, . . . , .sN ]T , where K � N . A number of T
snapshots is taken at times ti, i = 1, . . . , T , and collected in
S = [s(t1), . . . , s(tT )] ∈ CN×T . Similarly, the vectors y(ti)
in Y = [y(t1), . . . ,y(tT )] ∈ CL×T represent T snapshots of
the sensor measurements. They can be modeled by

Y = AS + N , (1)

where the columns of A = [a0(θ1), . . . ,a0(θN )] ∈ CL×N
contain the array steering vectors for all N locations with



‖a0‖22 = L. The sensor noise N=[n(t1), . . . ,n(tT )]∈ CL×T
is zero-mean Gaussian distributed. To determine S, given Y
and A, we formulate the following optimization problem [1]:

min ‖s(`2)‖1 s.t. ‖Y −AS‖2f ≤ β . (2)

The entries of the objective function s(`2)= [s
(`2)
1 , . . . , s

(`2)
N ]T

have the form s
(`2)
n := ‖[sn(t1), . . . , sn(tT )]‖2, n= 1, . . . , N.

The expressions ‖ · ‖p and ‖ · ‖f denote the lp-norm and
the Frobenius norm, respectively. Since the data is complex-
valued, it can be solved by second-order cone programming
(SOCP) [1, 17]. However, finding an automated process to
determine an optimal value of β is still a problem. For known
noise statistics, β can be obtained as follows. Let us as-
sume i.i.d. zero-mean, circular Gaussian noise with power
σ2
n. Since 2

σ2
n
‖N‖2f ∼ X 2

2TL with 2TL degrees of freedom,
we can estimate the α% confidence interval with X 2

u,α, X 2
l,α

being the upper and lower bound, respectively. As α% of all
realizations will fall below X 2

u,α, we find [1]

E[‖N‖2f ] ≤ β(α) = X 2
u,α

‖N‖2f
X 2
l,α

≈ TLX 2
u,α

σ̂2
n

X 2
l,α

, (3)

where σ̂2
n is an estimate of σ2

n. However, α is an empirically
selected user parameter. A thoroughly justified rule is hard to
obtain but desirable to avoid over-regularization (i.e. suppres-
sion of peaks). Section 4 shows that our proposed approach
significantly alleviates this problem. In the presence of array
errors, the choice of β becomes even more delicate.

Model Errors:
Ideally, the sensors have a uniform spacing of d = λ/2.
For simplicity, we describe position errors only along the ar-
ray axis (x-axis). Errors in y-direction can be treated in a
straightforward manner. Let us define a maximum sensor po-
sition error of ±d/2 which corresponds to a delay error of
∆τl(θk) at the l-th sensor with θk, k = 1, . . . ,K being the
DOA of the k-th source. The maximum error occurs when
θk = ±90◦, k = 1, . . . ,K. Hence, the maximum phase error
due to uncertainty in the position of the l-th sensor becomes

∆φl = ± pφ · ω
d

2c
= ± pφ ·

π

2
, l = 1, . . . , L , (4)

where c is the signal propagation speed and pφ, 0 ≤ pφ ≤ 1,
is the actual error, i.e. a fraction of the maximum error which
can be selected from the system specifications. Also the sen-
sor gain may be non-uniform along the array. We consider
uncorrelated sensor gain errors, g̃l, l = 1, . . . , L, distributed
around the ideal gain value g0 with maximum standard de-
viation σg,max := g0

2 . Typically, we set g0 = 1. Again,
the actual deviation at hand can be specified by a fraction
pg, 0 ≤ pg ≤ 1, i.e. σg = pg · g02 . The gain variance σ2

g

is a function of different physical parameters of the system
according to the specifications.

3. ROBUSTIFIED OVERCOMPLETE BASIS

To obtain a sparse basis that is robust against array errors,
we apply a pre-processing step to estimate the perturbed
steering vectors. They can be written in terms of the steer-
ing vectors obtained from the ideal model, a0(θ), and a
perturbation term, ∆, that accounts for gain and phase mis-
matches as well as uncertainties in the sensor positions, i.e.
a(θ) = a0(θ) + ∆. A commonly used technique [13, 16]
for estimating ∆ is to introduce an ellipsoidal uncertainty set
(a(θ)−a0(θ))HC−1(a(θ)−a0(θ) ) ≤ 1, where C contains
the coefficients of the ellipsoid. After applying an adequate
linear transformation [13], it can generally be written by
C = εI . Thus, the error between the ideal and the perturbed
steering vectors is bounded as

‖a(θ)− a0(θ)‖22 := ‖∆‖22 ≤ ε . (5)

When no a priori information is available, a too high value
of ε decreases the resolution and closely-spaced sources may
no longer be resolved. Hence, it is desirable to estimate ∆
directly without knowledge of ε. This can be done by em-
ploying the estimation technique proposed in [15, 16] which
will be briefly reviewed. Let us consider the covariance ma-
trix of the sensor outputs which is modeled by [13]

R =

K∑
k=1

σ2
ka0(θk)aH0 (θk) + Q , (6)

with Q being the noise covariance. The singular value decom-
position (SVD) yields R = U(LDK + LD̃K)VH with uni-
tary matrices U, V, and diagonal matrix L containing the sin-
gular values. DK = [IK ,0]T and D̃K = [0, IL−K ]T are the
subspace selection matrices. Hence, the signal and noise sub-
spaces can be written by Us = ULDK and Un = ULD̃K ,
respectively [1]. As in [16], let the true noise subspace be
Un = Ûn+ δUn, and let Ûn be an estimate of Un when the
sample covariance R̂ = 1

T YYH is used. The small deviation
δUn represents a stochastic estimation error. Ideally, the true
steering vectors are orthogonal to Un, i.e. [16]

(Ûn + δUn)H(a0 + ∆) = 0 , (7)

However, this does not hold for Ûn alone. The mean-squared
error (MSE) using only Ûn can be approximated by [16]

E
[
‖ÛH

n (a0(θ)+∆)‖22
]
≈ a0(θ)HCδUa0(θ) := γ2 . (8)

The expectation is taken over the estimation error δUn with
covariance matrix CδU = E[δUnδU

H
n ]. Since CδU and ∆

are small, their products are neglected in (8). In order to esti-
mate the true steering vectors (a0 + ∆), we are interested in
the error term ∆ which can be found by solving the quadrat-
ically constraint quadratic program (QCQP) [16]:

min ‖∆‖22 s.t. ‖ÛH
n (a0(θ) + ∆)‖22 ≤ γ2 (9)



Using the method of Lagrange multipliers, the authors in [16]
obtained a closed form solution as

∆̂ =

[
γ
(
a0(θ)HÛH

n Ûna0(θ)
)− 1

2− 1

]
ÛnÛH

n a0(θ). (10)

For a sufficiently high number of snapshots T , the estimation
error δU will be small, so γ tends to zero. Then, Eq. (10)
becomes ∆̂ = −ÛnÛH

n a0(θ). Finally, problem (2) can be
solved using the robustified sparse basis matrix obtained by

A(R) =
(
I− ÛnÛH

n

)
A (11)

The computational complexity to obtain A(R) is dominated
by the subspace decomposition of R̂, i.e. O(L3), while the
sparse optimization problem can be solved withO((K×N)3)
operations and less than O((K × N)0.5) iterations [1, 18].
Commonly, K × N > L, so the computational complexity
is not increased. However, additional computation time is re-
quired for the pre-calibration step whenever newly acquired
information from system monitoring is processed.

4. SIMULATION RESULTS

We compare the performance of the sparse techniques us-
ing (a) the standard basis derived from the ideal model
(SPARSE), and (b) the robustified basis obtained via pre-
calibration (R-SPARSE). The simulation setup contains
L = 9 sensors, K = 2 sources, closely spaced at locations
φ1 = −45◦ and φ2 = −35◦, which is inside the Rayleigh
resolution limit. The sources may be correlated with corre-
lation coefficient ζ. The angular accuracy of the system was
set to 1◦. For sparse DOA estimation, we used T = 10 snap-
shots, while the covariance matrix for pre-calibration was
estimated using T = 200 snapshots. In all simulations we set
pφ = pg = p. Figure 1 shows the detection rates for varying
SNR (lower subfigures) and the averaged absolute angular er-
rors (upper subfigures) which were calculated using the peaks
closest to the true source positions. All results have been av-
eraged over 500 Monte Carlo trials. First, we determined
the upper confidence bound of the noise distribution using
αS = 0.996 for SPARSE and αR = 0.5 for R-SPARSE. In
the case of uncorrelated sources (ζ = 0), R-SPARSE provides
reliable detection rates (2 peaks detected) for the given αR
at all SNR values while SPARSE has a narrow optimal SNR
region where reliable detection rates are obtained using αS
(αS was chosen to shift the optimal SNR into the shown SNR
region). At lower SNRs, its regularization is too high result-
ing in suppression of peaks, i.e. higher missed detection rate.
At higher SNRs, insufficient regularization leads to spurious
peaks, i.e. higher false alarm rate. The absolute angular error
for R-SPARSE goes smoothly down to the minimum achiev-
able value which is proportional to the gain/phase errors. For
correlated sources, higher SNRs are required to reach this
point. The error of SPARSE, however, increases abruptly at a
certain SNR threshold. When the source correlation increases
(second row of Figure 1), the performance of R-SPARSE
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Fig. 1. Det. rates and ang. error vs. SNR for different p, ζ.
Noise confidence bounds: [αS , αR] (up) and [α̃S , α̃R] (down)

decreases slowly but it is hardly affected by array errors.
SPARSE, in contrast, is strongly affected by the joint influ-
ences of source correlation and array errors, rendering lower
detection rates. The last row of Figure 1 shows the results for
ζ = {0.0, 0.3} with a small change α̃S = αS + ∆αS = 0.91
and a large change α̃R = αR + ∆αR = 0.8. This corre-
sponds to ∆αS = 0.086, ∆αR = 0.3, and a fraction ∆αR

∆αS

of around 11 dB. We observe that the optimal SNR range
of SPARSE is significantly shifted while R-SPARSE is only
slightly affected at low SNRs. Finally, Figure 2 illustrates
the results shown in Figure 1 by comparing the DOA spec-
tra. The spectrum of a standard delay-and-sum beamformer
(DSB) is shown as a reference. R-SPARSE is highly robust
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Fig. 2. DOA spectra for different values of SNR, p and ζ.



against array errors and resolves uncorrelated sources even
at low SNRs where SPARSE fails or yields incorrect results.
However, the limit of R-SPARSE is reached for almost co-
herent sources (ζ → 1) in the presence of array errors. The
high detection rate and accuracy of R-SPARSE at low SNRs
owes to the fact that most of the errors introduced by noise
and array perturbations are mitigated by pre-calibration while
the impact of source correlation remains.

5. CONCLUSION
A robust sparse DOA estimation method was presented. By
array pre-calibration, an improved sparse basis is obtained
which exhibits high robustness against array errors and noise.
Thus, high resolution is still achieved for severe array errors
and at low SNRs. Moreover, the problem of empirically se-
lecting α to upper bound the noise distribution is significantly
alleviated. For SPARSE, its choice is critical since slight de-
viations lead to abrupt changes in the optimal SNR range,
while R-SPARSE exhibits high robustness against incorrect
choices. Although standard SPARSE can handle source cor-
relation without array errors, the combined effects of source
correlation and array perturbations strongly debate the perfor-
mance. Since R-SPARSE mitigates noise and array errors, it
can perform better in the case of correlated sources.
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