
JOINT DISPARITY AND MOTION ESTIMATION USING OPTICAL FLOW FOR 
MULTIVIEW DISTRIBUTED VIDEO CODING 

 
Matteo Salmistraro*, Lars Lau Rakêt†, Catarina Brites‡, João Ascenso‡, Søren Forchhammer* 

 
*DTU Fotonik, Technical University of Denmark, {matsl, sofo}@fotonik.dtu.dk 

†DIKU, University of Copenhagen, Denmark, larslau@diku.dk 
‡Instituto Superior Técnico, Portugal, {catarina.brites, joao.ascenso}@lx.it.pt 

 
 

ABSTRACT 
 
Distributed Video Coding (DVC) is a video coding para-
digm where the source statistics are exploited at the decoder 
based on the availability of Side Information (SI). In a  
monoview video codec, the SI is generated by exploiting the 
temporal redundancy of the video, through motion estima-
tion and compensation techniques. In a multiview scenario, 
the correlation between views can also be exploited to fur-
ther enhance the overall Rate-Distortion (RD) performance. 
Thus, to generate SI in a multiview distributed coding sce-
nario, a joint disparity and motion estimation technique is 
proposed, based on optical flow. The proposed SI generation 
algorithm allows for RD improvements up to 10%  
(Bjøntegaard) in bit-rate savings, when compared with 
block-based SI generation algorithms leveraging temporal 
and inter-view redundancies. 
 

Index Terms— Distributed Video Coding, Multiview 
Video, Disparity Estimation, Motion Estimation, Optical 
Flow. 
 

1. INTRODUCTION 
 
In recent years, the Distributed Video Coding (DVC) [1, 2] 
paradigm has been considered as a promising approach for 
multiview scenarios [3]. DVC empowers an emerging set of 
applications, such as visual sensor networks, where each 
sensing node has limited computational resources, thus 
requiring low-complexity encoding but also efficient video 
compression. DVC is based on two information theoretic 
results from the 1970s, the Slepian-Wolf [4] and Wyner-Ziv 
(WZ) [5] theorems. In particular, the WZ theorem considers 
the setup where a source is independently lossy encoded but 
jointly decoded with a correlated signal, commonly referred 
to as Side Information (SI). Compared to predictive video 
coding, DVC exploits the source redundancy partially or 
totally at the decoder. This enables to leverage inter-camera 
redundancy without inter-camera communication. In Mul-
tiview DVC (M-DVC), the SI creation and fusion tech-
niques play a critical role in the overall compression per-
formance. Inter-view SI is generated by exploiting the inter-

view correlation between cameras, and the intra-view SI is 
generated exploiting the temporal correlation. Once the two 
estimations are generated, fusion techniques are typically 
applied to obtain the final SI, i.e. the two estimations are 
combined according to their reliability [6, 7]. The better the 
quality of the fused SI frame, the smaller the number of 
‘errors’ the DVC decoder has to correct and, thus, less re-
dundancy bits are transmitted. However, an alternative SI 
creation approach has been proposed in [8], the MultiView 
Motion Estimation (MVME) technique. First, MVME esti-
mates the disparity between temporally aligned frames in 
the central and lateral (left or right) views and then, motion 
is estimated for each matched block in the lateral view. The 
motion vectors obtained for the lateral view are then applied 
to the central WZ frame to generate the SI. To estimate the 
motion and disparity of each block, MVME uses a block 
matching algorithm. However, Optical Flow (OF) for mo-
tion estimation can lead to higher SI quality when compared 
with classical block-based SI generation methods [9], such 
as Overlapped Block Motion Compensation (OBMC) which 
is an efficient intra-view SI generation algorithm [10], rely-
ing on the use of weighted average of multiple candidate 
blocks. Motion estimation based on OF produces a dense 
motion field, where the displacement of each pixel is influ-
enced by the displacement of all other pixels through total 
variation regularization, allowing for higher flexibility in the 
motion estimation compared with e.g. OBMC [10].  Thus, 
the optical flow framework is exploited into a novel SI crea-
tion solution, called Time-Disparity OF (TDOF) with the 
following contributions: 1) the use of OF for estimating the 
motion of the current view given the lateral views in a DVC 
setup; and 2) the handling of occlusion through filtering and 
joint interpolation of scattered sets. To allow for better inter-
view matching quality, a pre-alignment step is introduced, to 
handle areas lying outside the field of view of one camera 
but available in the other view. TDOF shares with MVME 
the general concept of using the motion of lateral views to 
generate SI. Finally, the robustness of the proposed TDOF 
method is analysed using an on-line correlation noise  
modelling, as opposed to many M-DVC works still relying 
on off-line modelling [6, 7].   



The rest of the paper is organized as follows: in Section 2 
the adopted DVC architecture is presented, in Section 3 the 
proposed SI generation method is described and Section 4 
assesses its performance. 

2. MULTIVIEW DVC CODING ARCHITECTURE 
 

The proposed M-DVC codec is based on the monoview 
DVC codec presented in [10] and is depicted in Fig. 1. The 
three-camera multiview setup depicted in Fig. 2 is consid-
ered here where central view frames can be WZ or Intra 
coded according to a fixed GOP structure. The left and right 
views,  and , are independently encoded, and although 
they can be coded with any available video coding solution, 
the H.264/AVC Intra coding scheme has been adopted here, 
as it is typically done in literature [8]. The encoder of the 
central view divides the frames into Key Frames (KFs) and 
WZ frames, . The KFs are coded independently, using 
H.264/AVC Intra coding and the WZ frames are DCT trans-
formed, quantized and organized in bitplanes. Each bitplane 
is fed into a Low-Density Parity Check Accumulate 
(LDPCA) encoder [11] that generates the syndromes, which 
are stored in a buffer and sent to the decoder upon request. 
The M-DVC decoder uses already decoded frames from 
central and lateral views to generate the SI frame  and a 
residual frame , which corresponds to the estimation of  

. The soft probabilities of each bitplane are then calcu-
lated with a Laplacian correlation noise model, derived from 

: all the residuals used in this work are estimated without 
using . A feedback channel allows the decoder to request 
new syndromes (as in the Stanford DVC codec [1]) if the 
received syndromes are not enough to successfully decode 
the source (bitplane). To improve the reliability of the de-
coded bitplane, an additional 8-bit CRC is used to check for 
any remaining decoding errors. Once all the bitplanes of a 
given DCT band are decoded the corresponding coefficients 
are reconstructed [12]. 
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Fig. 1. Proposed M-DVC coding architecture. 
 

3. TDOF SIDE INFORMATION GENERATION 
 
Consider as the WZ frame to be coded. The TDOF (Time-
Disparity OF) approach makes use of three frames in the 
right view, three frames in the left view and  and 

in the central view. The disparity field between 
and is first calculated. Then, for each point 

(which may be a non-integer position) hit by a disparity 
vector in the motion vector between this point and its 
corresponding point in  is calculated, as depicted in Fig. 
2. The motion vector is then applied to the corresponding 
pixel, , in , obtaining a scattered set of points  
for the SI frame Y. The set of frames ,  and  
constitute a “path”. Applying this procedure to the other 
three paths, three new sets of scattered points can be ob-
tained:  (path ,  and ), (path , 

 and ) and (path ,  and ). The 
described solution differs from [8] because it is proposed 
here to calculate the disparity and motion with an OF tech-
nique followed by filtering and joint interpolation, i.e. the 
fusion of the scattered sets. The TDOF SI generation algo-
rithm can be divided into three steps, corresponding to the 
three introduced novelties: 1) pre-alignment of the time 
aligned frames to remove unmatched areas, 2) OF calcula-
tion, 3) scattered sets filtering and joint interpolation, to 
obtain the final SI. 
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Fig. 2. Three-camera setup, depicting the path for the set . 

 

3.1 Pre-alignment 
 

To allow for higher matching quality and higher robustness 
during the disparity estimation, the two temporally co-
located frames, (e.g.  and  for the set ), of 
each path are pre-aligned. The pre-alignment phase removes 
unmatched lateral (two) bands, one in the lateral frame and 
one in the central frame to assure that no significant occlu-
sions can occur. This allows for a higher quality match, 
because wrong estimations in those bands would influence 
the quality of the whole SI frame, given the particular for-
mulation of the OF problem. Consider the path leading to 
the calculation of  and the frames  and with 
dimension  pixels (with  being the number of col-



umns). The average global disparity  between these two 
frames is calculated by minimizing: 
 

 (1) 

 
where the indicator function  is defined as:  if 

, and  otherwise, and  is the search range 
employed in (1). In this way, the left (right) lateral band of a 
frame which has no correspondence in the right (left) band 
of the other frame is removed, generating the corresponding 
aligned set of frames  and . The relative distance 
between cameras does not change and it is the same between 
center and left and between center and right, therefore the 
same disparity may be used for pre-aligning the other left 
path, leading to generate set , while the opposite value 
can be used for the two remaining sets. 
 

3.2 Optical Flow Calculation 
 
With the aligned frames  and , the disparity field z 
can be estimated by minimizing the data fidelity term: 
 

. (2) 
 

 is, in general, a vector-valued function, therefore there 
are two unknowns at every point  in (2). To solve this issue, 
the TV-  formulation [13] has been adopted. TV-L1 relies 
on the L1-norm of the OF constraint (2), and a Total Varia-
tion (TV) regularization term: the 1-Jacobian of the field 
( )) [14] is adopted here. For the TV-  problem, a 
computationally efficient solution exists to minimize:  
 

  (3) 
 
where x is a 2D point in  OF based disparity estima-
tion produces a dense field, since a disparity vector is calcu-
lated for each pixel. The calculation of the disparity vector 
for point  is influenced by the quality of all the other 
matches (i.e. magnitude of the constraint) and the smooth-
ness of the disparity field. It is here proposed to directly 
generate a motion field having source in : the con-
straint for the motion estimation is defined taking into ac-
count the motion field v and the disparity . 
 

,  (4) 
 
The minimization of the energy, leading to the estimation of 

 is performed jointly with the already calculated : 
 

  (5) 
 
With this approach, each point  in  is directly coupled 
with its corresponding motion vector , which can be 

used to project  into a new location, obtaining the scattered 
set , composed by the elements .  
 

. (6) 
 

3.3 Scattered Sets Filtering and Joint Interpolation 
 
Once the four sets are available, it is possible to perform 
interpolation and obtain four SI frame estimations: 

, and  which averaged could lead to the 
final SI , mimicking the procedure used for MVME [8]. 
However, the use of the OF based technique presented in the 
previous Section allows higher granularity. Thus, the fol-
lowing solution is proposed; first, the scattered sets are 
fused: 
 

 and . (7) 
 
This fusion allows the handling of holes in SI, due to occlu-
sions and disocclusions. Moreover, when some points are 
wrongly matched with other points (that occurs when their 
true match is occluded), the density of points in some areas 
increases. Therefore, it is proposed to process each fused set 
( and ) to remove points from too dense areas: for each 

 having , where  is a threshold, the Φ 
closest neighbors are selected, including . Among them 
the neighbor having the highest value of  is re-
moved. Once the two sets have been filtered, they are inter-
polated to obtain the values for the pixel locations, using 
linear triangular interpolation. The interpolation is divided 
in two phases: first, using the scattered points, a piecewise 
triangular surface is generated. Then, for each point having 
integer coordinates, a bivariate linear interpolation is applied 
inside the triangle it belongs to [15]. This leads to the gener-
ation of the two joint estimations and . The final SI  
and its corresponding residual estimate  are calculated as: 
 

  and . (8) 
These calculations are carried out only for points which do 
not belong to the occluded regions identified in the pre-
alignment phase. For the pixels belonging to these regions, 

 or  is used as the final SI, depending on which one is 
available. For what concerns the correlation noise (or resid-
ual) in those regions, if  is available the residual is calcu-
lated as , otherwise  is used. 

 
4. EXPERIMENTAL RESULTS 

 
In Table 1, a detailed description of the test conditions is 
presented. To ensure a representative set of scenarios, video 
sequences [16] with still cameras (Outdoor and Book  
Arrival) and moving cameras (Kendo and Balloons), with 
different depth structures have been selected. All sequences 
were downsampled to CIF resolution. For the first two se-
quences, the distance between two consecutive cameras is 



6.5cm, while for the latter two the distance is 5cm. To ana-
lyze the robustness of the TDOF method, consecutive cam-
eras for the first two sequences are not used, leading to 
higher disparity.  The central view has been coded using a 
GOP 2 structure; all experiments are conducted only for the 
luminance component, as usual in DVC. The RD perfor-
mance of the proposed solution is assessed using four RD 
points, obtained using four quantization tables ( ) of the 
DISCOVER project [17] and varying the Quantization Pa-
rameter (QP) of the KFs accordingly, as shown in Table 2. 
The KFs are H.264/AVC Intra coded (Main profile). The 
QPs are chosen to minimize the PSNR variation in the cen-
tral view between KFs and WZ frames. The left and the 
right views are H.264/AVC Intra coded (Main profile), with 
the same QPs used for KFs.   
 

Sequence Frame Rate Coded Frames Views 
Outdoor 15 fps 100 6,8,10 
Book Arrival 15 fps 100 6,8,10 
Kendo 30 fps 300 3,4,5 
Balloons 30 fps 300 3,4,5 

 

Table 1. Test Conditions 
 

For the OF calculation, the energies  and  are mini-
mized, through an iterative procedure, in a coarse-to-fine 
pyramid, following the general implementation described in 
[14, 18]: 70 pyramid levels are used, and linear interpolation 
is used to upscale the flows from a coarser level to a finer 
one. Since the OF formulation treats a frame like a continu-
ous function, bicubic interpolation is used. After extensive 
experiments, it has been determined that  and 

 are appropriate for good RD performance, and they 
are the same for all RD points. The  and  values are 
different since the disparity field is usually much smoother 
than the motion field, therefore a high value of  is not 
required to ensure disparity matching, because usually 

. The proposed TDOF method is com-
pared with alternative SI generation solutions to justify 
some of the algorithm steps, namely: 1) : The SI corre-
sponds to the average of the OF-generated estimations 

, and ; and 2)  (resp. ): The SI is 
generated from the left (resp. right) view through OF, scat-
tered set filtering and joint interpolation (see Section 3.3). 
Table 3 shows the average SI quality for all frames for these 
three optical flow based solutions. 
 

Sequence     
Outdoor 38 32 28 23 
Book Arrival 39 36 29 25 
Kendo 39 36 29 22 
Balloons 33 30 24 20 

 

Table 2. QPs for Right and Left Views and KFs 
 

As shown, the scattered set filtering and joint interpolation 
technique is able to outperform, in SI quality, the simple 

average  of the OF-generated estimations and a single 
view (left or right) joint estimation ( or ). 
The RD performance of the proposed M-DVC solution 
(with the TDOF method) is compared with the RD perfor-
mance of three M-DVC codecs integrating the following 
benchmark SI generation solutions: 1) OBMC [10]; 2) 
DCVP (Disparity Compensated View Prediction) [19] ap-
plying OBMC between  and  ; and 3) MVME [8]. The 
OBMC and DCVP use the correlation noise (or residual) 
estimation of [10], MVME  and TDOF use the residual 
estimation in (8).   
 

Sequence    TDOF 

Outdoor 34.19 36.02 35.63 36.65 

Book Arrival 37.51 37.56 37.51 38.48 

Kendo 36.38 37.57 37.79 38.93 

Balloons 39.69 40.82 40.82 41.47 
 

Table 3. SI PSNR [dB] for alternative OF-based SI Generation 
Methods 

 

  MVME OBMC DCVP 

Sequence PSNR 
[dB] 

Rate 
[%] 

PSNR 
[dB] 

Rate 
[%] 

PSNR 
[dB] 

Rate 
[%] 

Outdoor 0.30 -4.13 0.43 -5.90 0.44 -6.14 
Book 
Arrival 0.50 -7.46 0.29 -4.45 2.55 -34.21 

Kendo 0.71 -10.40 0.58 -8.63 0.61 -9.03 

Balloons 0.59 -8.27 0.21 -2.92 1.48 -19.51 
 

Table 4. BD Gains of the Proposed TDOF Solution Regarding 
alternative SI Generation Methods 

 

In the filtering of the scattered set, proposed for the TDOF 
method, Φ=3, and  is chosen such that the number of 
points having  is less than or equal to the 1% 
of the total number of points in the fused scattered sets  or 

. Table 4 shows the Bjøntegaard (BD) [20] PSNR gains 
and bitrate savings between the TDOF SI generation method 
and the alternatives MVME, OBMC and DCVP. Rate and 
PSNR are calculated on all the frames of the central view. 
The OF-based solution outperforms all the other proposed 
solutions, for all the sequences; the highest gain when com-
pared with MVME and OBMC is obtained for the Kendo 
sequence (0.71dB and 0.58dB respectively), which has 
medium complex depth structure and a complex object 
motion. For what concerns DCVP, the highest gains are 
obtained for the sequences Book Arrival and Balloons 
(2.55dB and 1.49dB respectively) with relatively low mo-
tion activity and rather complex depth structure, making the 
temporal interpolation task much simpler than disparity 
compensation. In Fig. 3, the RD performance results ob-
tained for Outdoor and Kendo are presented; again, only the 
central view KFs and WZ frames rate and PSNR is consid-
ered. As shown in Fig. 3, the SI PSNR gains are reflected in 



M-DVC codec RD performance improvements. A similar 
trend is also followed by the other two sequences; RD re-
sults are not shown here for these two sequences due to 
paper length constrains. 

 
5. CONCLUSION 

 
In this paper, a new OF-based method for joint disparity and 
motion estimation for SI generation in M-DVC, called 
TDOF, is proposed; the TDOF method includes techniques 
to filter erroneous interpolations and to jointly interpolate 
sets of scattered points. The TDOF SI generation method 
leads to bitrate savings up to 10%, 8.6% and 34% when 
compared with MVME, OBMC and DCVP, respectively. 
 

 
(a) 

 
(b) 

 
Fig. 3. RD performance for Outdoor (a) and Kendo (b) sequences. 
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