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ABSTRACT
The stacking procedure is a key part of the seismic processing.
Historically, this part of the processing is done using seismic
acquisition data (traces) with common features such as the
common midpoint between source and receiver. These traces
are combined to construct an ideal trace where the source and
receiver are virtually placed at the same place. The traditional
stacking only performs a simple sum of the traces. This work
proposes a different way to perform the stacking, which uses
the singular value decomposition of a data matrix to create an
eigenimage where the noise and interferences are attenuated.
The proposed technique is called Eigenstacking. Results of
the stacking and eigenstacking are compared using synthetic
and real data.

Index Terms— SVD, stacking, high resolution, seismic

1. INTRODUCTION

The main way of extracting information of the subsurface for
gas and oil exploration is from the data provided by seismic
acquisition. In figure 1 we can observe some of the key fea-
tures involved in this kind of acquisition. The main system
is made by one source (or transmitter) and several geophones
(or receivers). The acquisition process starts with the deto-
nation of the seismic source, generating a seismic wave that
travels through the substructure where it undergoes refraction,
reflection and diffraction. The resulting wave field returns to
the surface and is recorded by the geophones. This procedure
is repeated, moving the seismic source and the geophones in
discrete increments, until the achievement of an accurate cov-
erage of the substructure. Each detonation of the source is
called a shot and the signal recorded by the geophone, corre-
sponding to one shot, is called trace.

The recorded traces contain information that can be re-
lated with the path of the wave in the subsurface, which gen-
erates recorded events such as primary reflections (waves that
suffer only one reflection and are thus directly related to the
subsurface structure), multiple reflections, diffractions, waves
that only propagates on the surface, and sources of noise [2].
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It is this relationship that enables the estimation of the ge-
ological structures from data recorded at the surface. How-
ever, the relationship is not immediate, and the traces are also
corrupted by noise, and by several distortion suffered by the
wave during its propagation. Thus, several signal processing
techniques may be employed to generate a good image of the
subsurface.

Several seismic processing techniques work with groups
of traces which present a common feature. For instance, we
may organize the data using the midpoint between the source
and the geophone that generate the trace. This configuration,
or family, is called common midpoint, or CMP. If we orga-
nize the traces in this configuration, we may say that if the
wave suffered a reflection at a given point, all the recorded
CMP traces will present that same reflection, at different time
instants. A CMP family and a reflection event are shown in
figure 2.

A traditional procedure in a CMP family is called stack-
ing, wherein we correct the traces of a CMP family for the
time differences in the reflections events and average their
amplitudes. As a result, stacking produces a new trace, with
less noise, which simulates a seismic experiment wherein
source and receiver are placed at that midpoint coordinate.
This is known as a zero-offset trace. (More details about this
procedure will be seen on section 2.) Also in the stacking
procedure, it is common practice to use more than one CMP
at each time. For example, we may use one neighbor CMP
at each side of the given CMP and consider the reflection
point to be located at the central CMP. This practice is called
supergather.

As an alternative to the traditional stacking procedure, our
proposal is to use more information of the traces to create
the trace with zero-offset. The traditional stacking only sums
selected time instants of the traces. We propose to gener-
ate a data matrix for each time instant and apply a singular
value decomposition in this matrix, in order to attenuate in-
terferences in that matrix and select only aligned events for
the stacking operation. The main particularity of that ma-
trix is that its columns are time samples above and bellow the
time instant being considered for the stacking. We named this
method Eigenstacking. More details about the Eigenstack-
ing are shown in section 3. A similar method was proposed



Fig. 1: Seismic acquisition and the several distortions that the seismic wave suffers. Extracted from [1].

in [3]. However, in that paper, the SVD was applied only to
few neighboring traces and to all time instances simultane-
ously.

The article is organized as follows: on section 2 we dis-
cuss the traditional stacking; on section 3 our proposal will be
discussed; on section 4 our results will be shown and, finally,
on section 5 we will make some comments about the method.

2. STACKING

In this section we describe the stacking procedure. As men-
tioned in the introduction, in this work we will use CMP fam-
ilies. In figure 2 we illustrate the geometry of the traces from
a CMP family. In this figure, the sources are represented
on the left and the receivers on the right. Each pair source-
receiver represents a trace. If we consider the horizontal re-
flector shown in figure 2, [4] we see that all reflections in a
CMP family occur on the same position. This is a good ap-
proximation even if the velocities are not homogeneous and
the reflectors are not exactly horizontal [2].
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Fig. 2: A horizontal reflector and an CMP family traces that
reach this reflector.

The main feature of the CMP method is to combine all the
traces from a CMP family to create an ideal trace with source

and receiver at the same point, called zero offset (ZO) trace.
The amplitude of the ZO trace at time instant t0 is the aver-
age of the amplitudes of the traces of the CMP family taken
at appropriate time instants. We select the time instants on
each trace assuming that every t0 in the ZO trace represents
a reflection. This procedure is called stacking, and it is simi-
lar to the concept of spatial diversity used in communication
systems to increase signal-to-noise ratio [2].

To find the exact instant of time that represents the reflec-
tion on each trace, we use a normal moveout (NMO) travel-
time, which can be evaluated as

t2(x) = t20 +
x2

v2
, (1)

where v is called stacking velocity, t(x) is the time that the
wave travels from the source, reflect, and returns to the re-
ceiver and x represents the trace offset. As we can see on
figure 2, equation (1) can be obtained using simple geomet-
rical analysis. If we place all the corrected traces of a CMP
together we form a data matrix where all the columns corre-
spond to the traces. This data is called NMO panel. If the
velocity is correct all events are horizontal aligned.

Clearly, equation (1), and hence the stacking procedure,
depends on the velocity v, which needs to be estimated from
the data. For a given t0, the search can be done with a coher-
ence analysis [5], using a data matrix with L time instants be-
low and above the time travel calculated in (1) and testing for
a range of values of v. The idea is that, for the correct veloc-
ity, all the events in the window will be coherent, in that they
will all correspond to the same reflection. The most widely
used measure of coherence is the semblance [6].

The stacking procedure sums the traces amplitudes at the
time instants calculated using equation (1) with the velocity
which led to the maximum coherence value. But, if the ve-
locity tracking was made, in some aspects, in incorrect way,
we will not sum the correct reflections on the CMP family.



To avoid this, we can select a data window using L time sam-
ples up and above the calculated time, as shown in figure 3,
and make some combinations with this window. One of the
possible combination will be shown on the next section.
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Fig. 3: This figure illustrates how the matrix is selected from
the data.

3. EIGENSTACKING

As seen on previous section, for a given t0 and v, we select
a data matrix, named X, from the traces of the CMP family.
One of the many data manipulation that we can apply to X is
the singular-value decomposition, which can be written [7]

X =

r∑
i=1

σiuiv
T
i = UΣVT (2)

where r is the rank of X, ui is i-th eigenvector of XXT , vi is
the i-th eigenvector of XTX and σi is the i-th singular value
of X. The matrices U, Σ and V correspond to the matrix
notation of the eigenvectors and singular values.

According to [7] we may denote the outer product uiv
T
i

as the i-th eigenimage of the matrix X and σ2
i is the energy

of the i-th eigenimage. This outer product produces a ma-
trix with rank one and, consequently, the lines of this matrix
will be linearly dependent and have the capability to capture
horizontal events of X. These eigenimages form an orthogo-
nal basis that can be used to reconstruct the matrix X using
equation (2). If we analyze the singular values resulting of
the SVD of X we note that their magnitude decreases, so we
may say that the largest singular values are linked with the
first eigenimages.

If there is a seismic event perfectly horizontal on the se-
lected matrix and with the correct velocity, the first eigenim-
age will contain all columns with the same event. If we ana-
lyze the energy of the matrix, we observe that the first eigen-
images contain a large amount of the matrix energy based on
the value of the singular value. We may observe that the first
eigenimage σ1u1v

T
1 will reconstruct the matrix X and the

others eigenimages will present lower levels of energy and
noise energy, predominantly. We may associate this particu-
larity to the proposal of using only one eigenimage to recon-
struct the matrix [7].

As before, we consider a seismic event perfectly horizon-
tal, but if the event is not perfectly horizontal the energy will

not be concentrated on the first eigenimages. We may say that
on the first eigenimages there will be a large amount of signal
and a little of noise energy. As we analyze the last eigenim-
ages, there will be a lot of noise energy. So, if an event is not
precisely horizontal, we use only the first eigenimages and
discard the last eigenimages. This elimination will increase
the signal-to-noise ratio of the resulting matrix.

Considering the discussion above, we propose substitute
the matrix X by its first eigenimages and then perform the
stacking procedure. In our studies and tests, we chose two
configurations to test how effective is the use of few eigenim-
ages to the stacking procedure. In the first configuration we
use only one eigenimage to create a new matrix and apply the
stacking. In the second configuration we use three eigenim-
ages to then apply the stacking operation. These two choices
have, respectively, the minimum number of eigenimages and
the number of eigenimages that may contain almost all of the
energy of the data matrix.

In our tests and simulations, we used a synthetic envi-
ronment with the presence of additive white Gaussian noise
(AWGN), 501 time samples and the maximum number of 90
traces in a CMP family. We also tested our methods in a real
data set of a seismic line, acquired at Alaska, which has 2501
time samples and the maximum number of 12 traces in a CMP
family.

4. SYNTECTIC AND REAL DATA RESULTS

In figure 4, we show the results of the traditional stacking, a
modified stacking with one eigenimage and with three eigen-
images, for the synthetic data. We can observe in figure 4(b)
that by using only one eigenimage we filter a large amount
of noise, and the reflectors can be better detected, when com-
pared to traditional stacking in figure 4(a). On the proposed
procedure with three eigenimages, reported on figure 4(c) we
also observe a filtering of the noise, but the resulting figure is
noisier than figure 4(b).

On figures 5 and 6 we show some results of a real data
seismic line in Alaska. On figures 5(a) and 6(a) are shown
the traditional stacking, repeated to have a better view of
the results. On figures 5(b) and 6(b) we show the results of
the stacking procedure applying the SVD decomposition on
the window of data with one and three eigenimages, respec-
tively. We notice, on both results, the noise was filtered but
an amount of signal was lost on figure 5(b) near five seconds
when compared with the same area on figure 6(b). The results
of the stacking applying the SVD decomposition and creating
eigenimages on the NMO panel are shown on 5(c) and 6(c).
We noticed a washout in the seismic image but with some
horizontal faults. In both cases, we use a supergather of 3
CMP families.
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Fig. 4: Results of the synthetic data. In (a) the traditional stacking, in (b) the proposed method using only one eigenimage and
in (c) using 3 eigenimages.
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Fig. 5: Results of our simulations using real data of a seismic line in Alaska. In part (b) the SVD is applied in the data window,
the first eigenimage is obtained and replace the X matrix. In part (c) the SVD is applied on the NMO matrix.



0

1

2

3

4

5

t(
s
)

200 400
traces

(a) Stacking

0

1

2

3

4

5

t(
s
)

200 400
traces

(b) Data Matrix

0

1

2

3

4

5

t(
s
)

200 400
traces

(c) NMO Matrix

Fig. 6: Results of our simulations using real data of a seismic line in Alaska. In part (b) the SVD is applied in the data window,
the three firsts eigenimages are obtained and replace the X matrix. In part (c) the SVD is applied on the NMO matrix.

5. CONCLUSION

The stacking procedure on a seismic image performs a key
feature of the seismic imaging. It increases the signal to noise
ratio of the acquired signal that will be used to reconstruct the
substructure of an area of interest. Our proposal is to perform
a high resolution form of calculating this step using an singu-
lar value decomposition, resulting in a seismic representation
with no loss in the elements of interest.
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