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ABSTRACT
In this paper, a new method is presented to ensure automatic
synchronization of intracardiac ECG data, yielding a three-
stage algorithm. We first compute a robust estimate of the
derivative of the data to remove low-frequency perturbations.
Then we provide a grouped-sparse representation of the data,
by means of the Group LASSO, to ensure that all the electrical
spikes are simultaneously detected. Finally, a post-processing
step, based on a variance analysis, is performed to discard
false alarms. Preliminary results on real data for sinus rhythm
and atrial fibrillation show the potential of this approach.

Index Terms— electrocardiography, multi-channel signal
processing, sparse inference, group LASSO.

1. INTRODUCTION

Digital signal processing techniques have been extensively
used in the analysis of biomedical signals. Historically, elec-
trocardiograms (ECGs) were among the first signals to be pro-
cessed, and nowadays are routinely used in diagnosis, therapy
and monitoring situations [1]. Here we focus on the analysis
of multi-channel intracardiac ECGs, also known as electro-
grams (EGMs). Intracardiac ECGs are used in implantable
devices (e.g., pacemakers and defibrillators) for several ap-
plications: identification of ventricular tachycardias [2], early
alert of the presence of acute myocardial infarction [3], ar-
rhythmia classification for appropriate therapy delivery [4],
etc. EGMs are also acquired during heart surgery performed
on patients with sustained atrial fibrillation (AF), which is one
of the most common heart disorders, to guide catheter abla-
tion for patients not responding to drug therapies [5].

The analysis of EGMs has been traditionally based on
single-channel frequency [6] or time-frequency approaches
[7]. Alternative methods, based on organization analysis and
its combination with frequency analysis have also been con-
sidered [8]. More recently, machine learning techniques (e.g.,
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support vector machines [4]) and sparse learning/inference
schemes [9–11] have also been introduced. However, all
of these methods are still typically based on a channel-by-
channel approach, and EGM signals suffer from many dis-
tortions (such as baseline wander, breath-induced amplitude
modulation or severe noise and interference [1]), which may
prevent the detection of some activations in one or more chan-
nels. A multi-channel approach, which takes into account the
information from all the channels simultaneously, will help
to alleviate this losses, thus adding robustness to any further
signal processing stage based on the detected spikes.

In this paper, a new method is presented to ensure auto-
matic synchronization of multiple EGM channels, yielding a
three-stage algorithm. A robust estimate of the derivative of
the data is computed first to remove low-frequency perturba-
tions. This is followed by a joint sparse representation of the
data, based on the Group LASSO, to ensure that the electrical
spikes corresponding to all the channels are simultaneously
detected. Finally, a post-processing step, based on a variance
analysis, is performed to discard false alarms. The resulting
algorithm is a multi-channel extension of the single-channel
sparse spike inference approach developed in [9]. Preliminary
results obtained on real data, both for sinus rhythm and atrial
fibrillation, show the potential of this approach.

2. SYNCHRONOUS SPIKE DETECTION FROM
INTRACARDIAC ECG DATA

2.1. Model Description

Assume that we observe a multichannel signal stemming, in
our case, from intracardiac ECG measurements, uniformly
sampled with sampling period Ts. This discrete signal can
be modelled by a matrix Y of size N ⇥ Q, where Q denotes
the number of channels (i.e., the number of electrodes) and N
denotes the number of sampling points recorded:

Y
�
=

2

6664

y1[0] y2[0] · · · yQ[0]
y1[1] y2[1] · · · yQ[1]

...
...

. . .
...

y1[N � 1] y2[N � 1] · · · yQ[N � 1]

3

7775
. (1)



Each signal yq[n] consists mainly of localized pulses,
characterizing the heart activity, and a slowly varying base-
line, also known as baseline wander (see e.g. [1]). Hence,
a first preliminary step is required before further analysis,
namely a baseline removal. A basic differentiation would
magnify the recorded perturbations (noise, powerline inter-
ference, etc. [1]). Therefore, a more robust estimate of the
signal derivative is described in the following section.

2.2. Robust derivative estimation for data analysis

The estimation of a functional derivative is a well known
problem in the statistical community. In this paper, we apply
the robust method described in [12] to approximate the sig-
nal’s empirical derivative by means of the weighted average
of a collection of difference quotients,

zj [n] =
kX

i=1

wi
yj [n+ i]� yj [n� i]

2iTs
, (2)

where k is a tuning parameter that controls the smoothness of
the curve obtained, and the weights wj are chosen as

wj =
6j2

k(k + 1)(2k + 1)

in order to minimize the variance of (2), as proved in [12,
Proposition 1]. The latter procedure provides a clean deriva-
tive estimate, in the sense that the baseline is suppressed and
the influence of noisy artifacts is significantly reduced, as seen
in Figure 1 for k = 12. This comes at the price of an increased
bias in the estimation of the true derivative, which increases
as k grows. However, it is important to remark that we are
not interested in a perfect reconstruction, but rather on partial
information, which is pulse localization. As in Eq. (1), we
shall denote by Z the matrix of signal derivatives, zq[n] for
q = 1, . . . , Q and n = 0, . . . , N � 1.

2.3. Grouped-sparsity representation for spike detection

Our next step is providing a sparse representation of Z by
means of a pre-defined dictionary A, in order to estimate the
pulse arrivals simultaneously in all channels. Note again that
we are only interested in the localization of the pulses, not in
the full representation of the observed signals, and that no op-
timal base is known for the ECG signal representation. There-
fore, the chosen dictionary must be time-structured and over-

complete, in the sense that the same collection of basic shapes
has to be associated to each sampling point, since we cannot
predict neither the exact occurrences of electrical pulses nor
their shape.

Mathematically, if we assume that the signals are created
from M discretized basis waveforms, am[n] = am(nTs) 6=
0 , �Nm  n  Nm for m = 1, . . . ,M , then

A = [A0 A1 · · · AN�1]

is an N ⇥ MN overcomplete dictionary, with M > 1 in-
dicating the number of basis signals in the dictionary and
A` = [a1,`, . . . ,aM,`] being the `-th N ⇥ M circulant dic-
tionary matrix, with am,` = [am[�`], . . . , am[�1], am[0],
am[1], . . . , am[N � 1 � `]]> the N ⇥ 1 vector correspond-
ing to the m-th basis waveform shifted to n = `. Now, let
us denote by s the NQ⇥ 1 vector obtained concatenating the
columns of Z, i.e.,

s
�
= [z>1 , z

>
2 , . . . , z

>
Q]

>, (3)

with z>q = [zq[0], . . . , zq[N � 1]] (1  q  Q), and by B the
NQ⇥MNQ block diagonal matrix obtained replicating A:

B
�
=

2

6664

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

3

7775
. (4)

Assuming a sparse decomposition of s according to B, our
reconstruction model is

s = B� + ",

where � is the MNQ⇥1 vector containing the decomposition
of s according to the dictionary B and " is the NQ⇥1 additive
white Gaussian noise vector.

When the channels are perfectly synchronized, � can be
decomposed into groups of coefficients being active or in-
active altogether. Let us denote by G the integer set G �

=
{1, 2, . . . ,MNQ} of column indices of B, and define the
subsets

Gn
�
= {m+nM+(q�1)MN, 1  m  M, 1  q  Q},

(5)

for n = 0, . . . , N � 1. From (5), it is clear that the Gn form
a partition of G, i.e., G = [N�1

n=0 Gn with Gn 6= ; and G` \
Gn = ; for any ` 6= n with `, n 2 {0, . . . , N � 1}. Similarly,
for any vector � = [�1,�2, . . . ,�MNP ]> we denote by �Gn

the vector whose coefficients are equal to �p if p 2 Gn and 0
otherwise. Following (4) and (5), the Group LASSO solution
is given by [13]

b� = argmin
�2RMNQ

ks�B�k22 + �
N�1X

n=0

k�Gn
k2, (6)

where � is a user-defined parameter quantifying the level of
desired block-sparsity. Note that the subsets Gn are defined in
such a way that �Gn

contains all the coefficients for the sparse
decomposition, at the time instant n, of all the channels (zq[n]
for q = 1, . . . , Q) using all the waveforms in the dictionary
(am[n] for m = 1, . . . ,M ).

Eq. (6) is of interest if we aim to keep synchronicity be-
tween channels. In a nutshell, it enforces grouped sparsity
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Fig. 1. Original signal (left), standard derivative (center), estimate from (2) using k = 12 (right)

instead of coefficient driven sparsity, and it can be proved that
all the coefficients within a group contribute to the regres-
sion whenever it is active [13]. Hence, if the groups are cre-
ated according to (5), the coefficients related to similar start-
ing points of different channels would be active/inactive al-
together. In a sense, we could say that the group LASSO
described in (6) forces synchronicity between channels, en-
forcing a pulse localization in the same neighborhood of the
other channels whenever we detect a pulse in one channel.
Note, however, that the dictionary used is not ideal, as the
real pulse shapes are unknown. Therefore, false localizations
may occur, and the coefficients obtained in (6) must be post-
processed in order to obtain a robust estimate of the arrival
times of the pulses.

2.4. Post-processing and arrival times estimation

We recall that the observed array of signals is not created us-
ing the chosen dictionary B. Indeed, the shape of the ob-
served pulses can change substantially from one channel to
another and may also be slowly time-varying. Consequently,
it is likely that an individual pulse on one channel will not
be estimated with a single given shape am, but rather by a
combination of shapes found in consecutive subdictionaries
A`. This fact can become an issue if our aim is estimating
the pulse arrival times. In order to solve this problem, we in-
troduce a post-processing step adapted to the Group LASSO
particularities.

If a group of variables is active, it could either represent an
actual electrical pulse or a segment of noise (either additive,
either stemming from the differentiation step). We suggest in
this paper the following post-processing of b�. For each group
Gn, we set

b�
new

Gn
=

⇢ b�Gn
, Var(b�Gn

) > �2
G;

0, otherwise;
(7)

where Var(b�Gn
) denotes the empirical variance of the coef-

ficients of the group Gn, and �2
G is a user-defined threshold

(the choice of its value is discussed in the results section).

The motivation for (7) stems from our non-ideal choice
of the dictionary. Since B only approximates the recorded
ECG, it is likely that, when a pulse occurs, the group LASSO
will activate several consecutive groups to provide a good
regressor, and that a few coefficients inside the groups will
represent the main waveform, whereas the remaining coeffi-
cients will be much smaller and just serve to refine the regres-
sion. On the other hand, when the group LASSO provides
active groups to estimate the additive noise, all coefficients
will have the same order of magnitude. These considerations
make the variance of the coefficients of the active groups a
valid numerical choice to distinguish between noise and ac-
tual pulses. Ideally, for pure noise the groups should be in-
active, thus providing a variance equal to 0, which is consis-
tent with our choice. Moreover, we assume that all succes-
sive active groups are related to the same electrical pulse, and
estimate the number of electrical pulses and their locations
iteratively as

tn = min{` > tn�1 : kb�
new

G`�1
k2 = 0, kb�

new

G`
k2 > 0}. (8)

Signal to Noise Ratio

3. RESULTS

We present in this section results obtained on real ECG data
provided by Dr. Angel Arenas’ team from Madrid’s Gregorio
Marañón hospital (Spain). The signals correspond to patients
with sustained atrial fibrillation (AF) and were obtained dur-
ing heart surgery. They can be divided into two groups: ar-
tificially induced sinus rhythm and AF signals. All of the
recordings were performed using a lasso catheter, which pro-
vides Q = 10 bipolar intracardiac ECGs (i.e., channels) with
sampling frequency fs = 1/Ts = 977 Hz.

3.1. Experimental settings

Since the true shape of the pulses is unknown, in this contri-
bution we use a smooth dictionary B composed of truncated
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Fig. 2. Signal derivatives (blue) and sparse approximations (red) of channel 1 and 10 of the recordings for sinusal data (above)
and atrial fibrillation (below).

Gaussian shapes, i.e.,

am[n] = e�n2/2�2
m , n = �15, . . . , 15,

where �m 2 {1, 2, 3, 4, 5, 6}. The number of points used
in (2) is chosen so that k = 6, which has been shown ex-
perimentally to provide a reasonable bias-variance tradeoff
in our dataset. The parameters in the sparse inference algo-
rithm were also obtained empirically through an extensive
grid search over several scales. The sparsity parameter in (6)
was set to � = 0.002 for sinusal data and � = 0.0005 for
atrial fibrillation, and we found in both cases that setting
�2
G = 0.0002 in (7) was a good choice. The optimization

is performed by using a thresholded-gradient method known
as the FISTA method [14]. Since the proposed algorithm
involves matrices of high dimensions, we split the signals
in blocks of 80 sample times and perform the analysis on
each block separately. Though the signal could be split in the
middle of an electrical pulse, the post-processing allows us to
solve this issue.

3.2. Results and discussion

Figure 2 presents two channels and their sparse approxima-
tions by means of the proposed approach, both for sinus
rhythm and AF. We can see that, provided the sparsity pa-
rameters are well suited, the peaks of the ECG recordings

can be easily detected, and most of the spurious signals and
noise removed. Moreover, the synchronous reconstruction
enables us to detect peaks even on channels with lower Signal
to Noise Ratio, which is a significant advantage. An example
of the estimated arrival times for sinus rhythm is presented in
Fig. 3. The observation of these two figures illustrates both
the advantages and shortcomings of the proposed approach.
On the one hand, it can be observed that the pulse arrivals
are well detected and synchronous, which is typical of sinus
rhythm. In this sense, the algorithm will yield a more precise
frequency analysis and improve the approaches of [9,10]. On
the other hand, when one abnormal pulse is detected (as in
the first channel), the false detection will appear in all the
channels (e.g., in channel 10 around sample time 2000). For
AF, it is difficult to distinguish normal pulses from outliers, as
the ground truth is unknown. However, we note that synchro-
nization has also been achieved and a great deal of distortion
removed from the signals (see channel 10 in Fig. 2). Note
that these issues are strongly related to a post-processing
step, since Bk is made of several columns which character-
izes pulses starting at the same time. Indeed, it is important
to remark that both the robust derivative estimator introduced
in the pre-processing stage and the novel post-processing of
the group LASSO results (based on the intra-group coeffi-
cient variance) are crucial to attain the results shown in Figs.
2 and 3. Finally, let us remark that the proposed approach
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Fig. 3. Estimated times of all the channels and the associated
signals. The estimated times are well synchronized, and most
of the noisy parts are removed.

does not take into account neither the refractory period nor
the refinement of [10], which we plan to introduce in future
works.

4. CONCLUSION

We have presented an efficient way to detect ECG pulses
simultaneously from multichannel recordings based on the
well-known group LASSO approach. The preliminary robust
estimation of the derivative allows us to significantly reduce
the noise influence, whereas the novel post-processing intro-
duced allows us to eliminate false alarms in the group LASSO
representation. A more extensive investigation of the perfor-
mance of the proposed method on atrial fibrillation datasets,
the addition of regularization terms taking into account the
physical constraints of the heart electrical activity, and more
sophisticated and flexible multi-channel approaches (e.g.,
group LASSO with overlapping groups or social sparsity
approaches) will be investigated in future contributions.
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