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ABSTRACT

In this paper, we introduce a novel sparse method for joint

estimation of the direction of arrivals (DOAs) and pitches of

a set of multi-pitch signals impinging on a sensor array. Ex-

tending on earlier approaches, we formulate a novel dictio-

nary learning framework from which an estimate is formed

without making assumptions on the model orders. The pro-

posed method alternatively uses a block sparse approach to

estimate the pitches, using an alternating direction method

of multipliers framework, and alternatively a nonlinear least

squares approach to estimate the DOAs. The preferable per-

formance of the proposed algorithm, as compared to earlier

methods, is shown using numerical examples.

Index Terms— multi-pitch estimation, group sparsity,

block sparsity, dictionary learning, ADMM, direction-of-

arrival.

1. INTRODUCTION

The estimation of fundamental frequencies, or pitches, of har-

monically related, and often acoustic, signals is a common

problem occurring in various forms of applications, and per-

haps most notably so in audio processing (see, e.g., [1] and

the references therein). Due to the importance of such appli-

cations, there have been notable contributions on pitch esti-

mation for signals containing both single and multiple pitches

(see e.g., [2–5]). By using an array of several sensors, one

may exploit the relative time-delay information at the differ-

ent sensors to determine the location of the impinging sound

sources. Commonly, existing techniques, as the ones in, e.g.,

[6–8], make strong a priori assumptions on the model struc-

ture of the impinging signals, such as the number of pitches,

as well as the number of harmonics in each pitch. Alterna-

tively, model order information criterias may be used to de-

termine the appropriate model order, such as in [9, 10], or

by applying an optimal filtering approach reminiscent to the

one proposed in [11]. In this work, we extend on the method

presented in [5], and propose a novel joint DOA and pitch
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estimation technique, formed by using a novel sparse signal

reconstruction framework. The technique is reminiscent to

the one presented in [12], wherein the solution space is ex-

panded to a large dictionary of candidate fundamental fre-

quencies, from where a small number of pitches which have

the best fit to the data are chosen. As the data is measured

with several sensors, where each has a phase offset accord-

ing the specific geometry of the array and the location of the

sound source, both the pitches and the sensor phases must be

estimated jointly. Such a joint estimation typically requires

solving a non-convex optimization problem. Herein, we avoid

this difficult by applying a dictionary learning technique, rem-

iniscent to the ones presented in [13,14]. We thereby split the

problem into two subproblems, allowing for an iterative re-

finement of the pitch estimates, formed using an alternating

direction method of multipliers (ADMM) framework, and of

the DOA estimates, using a nonlinear least squares (NLS)

formulation. The method allows for the estimation of the

DOAs and pitches from multi-pitch signals originating from

one or more locations, without having to know the number

of sources, pitches, or their respective number of harmonics.

Our claims are illustrated using numerical simulations of au-

dio signals, comparing the achieved performance to other re-

cent estimators.

2. THE PITCH-DOA SIGNAL MODEL

Consider K complex-valued and harmonically related acous-

tic signals impinging on an array of sensors, corrupted by ad-

ditive noise and interference, such that the signal measured at

the mth sensor may be well modelled as [6, 15]

ym(t) =

K
∑

k=1

Lk
∑

ℓ=1

cmdk,ℓe
jωkℓ(t+τk,m) + em(t) (1)

where dk,l is the complex-valued amplitude of the ℓth har-

monic of the kth pitch, whereas Lk and ωk are the number

of harmonics and the pitch of the kth signal source, respec-

tively. Furthermore, let em(t) denote the additive noise term,

cm the sensor gain, and τk,m the time-of-arrival for the kth

signal source. Define the measurement matrix

Y =
[

y(1) . . . y(N)
]T

(2)



where, at each time point, n = 1, . . . , N , the data snapshot is

found as

y(t) =
[

y0(t) . . . yM−1(t)
]T

with (·)T denoting the transpose. Then, (2) may be concisely

expressed as

Y =

K
∑

k=1

Wkdiag(dk)Fk(τ k)C+E (3)

where E denotes the combined noise term constructed in the

same manner as Y, and

Wk =
[

wk . . . w
Lk

k

]

(4)

wk =
[

ejωk . . . ejωkN
]T

(5)

dk =
[

dk,1 . . . dk,Lk

]T
(6)

Fk(τ k) =











ejωkτk,1 . . . ejωkτk,M

ejωk2τk,1 . . . ejωk2τk,M

...
. . .

...

ejωkLkτk,1 . . . ejωkLkτk,M











(7)

τ k =
[

τk,1 . . . τk,M
]T

(8)

C = diag
([

c1 . . . cM
])

(9)

such that diag(·) is a diagonal matrix. One may note that Wk,

for k = 1, . . . ,K, consists of stacked Fourier vectors, for

each harmonic of a pitch in the temporal domain, whereas Fk

consists of stacked Fourier vectors (or array transfer vectors)

in the spatial domain with respect to the time-of-arrivals, τ k,

repeated for each pitch k and its Lk harmonics. We proceed

to reformulating the problem in (3) using a sparse estimation

framework, reminiscent to the one presented in [12], extend-

ing the representation of the K pitches onto a large dictionary

of P candidate fundamental frequencies, ω1, . . . , ωP , where

P ≫ K, chosen so large that K of these will reasonably well

coincide with the true pitches in the signal. In the same fash-

ion, the number of harmonics of each pitch, Lp, is extended to

an arbitrary upper level, say Lmax, for all dictionary elements,

p = 1, . . . , P . One can, without loss of generality, assume

C = I, i.e., that the data measurement matrix has been pre-

conditioned to account for different gain at different sensors.

The signal model may thus be expressed as

Y =

P
∑

p=1

Wpdiag(dk)Fp(τp) + E (10)

= W diag(d)F(τ ) + E (11)

where the block dictionary matrices are formed by stacking

the matrices such that

W =
[

W1 . . . WP

]

(12)

F(τ ) =
[

F1(τ1)
T

. . . FP (τP )
T
]T

(13)

where W ∈ C
N×PLmax , F(τ ) ∈ C

PLmax×M , and

d =
[

d1
T . . . dP

T
]T

(14)

τ =
[

τ 1 . . . τP

]T
(15)

with d ∈ C
PLmax×1 and τ ∈ R

P×M . The resulting signal

formulation provides a more structured framework than the

one presented in [15], separating the complex-valued ampli-

tudes, d, and the sensor offsets in F(τ ). If the sensor array

is assumed to be a uniform linear array (ULA), the time-of-

arrivals may be related to the corresponding DOA as [9]

τk,m = (m− 1)δ sin(θk)γ
−1 (16)

with δ, γ, and θ denoting the uniform distance between sen-

sors, the wave propagation velocity, and the DOA respec-

tively. The P × M time-of-arrivals may thus be expressed

as a function of the set of DOAs

θ =
[

θ1 . . . θP
]T

(17)

In the interest of notational simplicity, we hereafter use only

the dependency of θ instead of τ (θ). For other array geome-

tries, one may replace (16) with another function mapping

from directionality or location to the time-of-arrival.

3. DICTIONARY LEARNING APPROACH

In order to form the estimate of the unknown DOAs and

pitches, we formulate the estimates as the solution to a group

sparse minimization reminiscent to the scheme presented

in [5], such that

minimize
θ,d

1

2

∥

∥

∥
Y −W diag(d)F(θ)

∥

∥

∥

2

F

+ λµ

P
∑

p=1

∥

∥dk

∥

∥

2
+ λ(1− µ)

∥

∥d
∥

∥

1
(18)

where block sparsity is imposed on d, such that the number of

pitches, as well as the number of harmonics within each pitch,

are sparse. Here, we set λ > 0 as a parameter weighting the

degree of sparsity to the fit of the solution, while µ ∈ [0 , 1]
prioritizes between sparsity and block sparsity. In order to

simplify the minimization, one may formulate (18) equiva-

lently as

minimize
θ,d

1

2

M
∑

m=1

∥

∥

∥
ym −W diag (f m(θ))d

∥

∥

∥

2

2

+ λµ
P
∑

p=1

∥

∥dk

∥

∥

2
+ λ(1− µ)

∥

∥d
∥

∥

1
(19)

such that the minimization is formed by summing the squared

residual errors sensor by sensor, where f m(·) is the mth col-

umn of F(·), and where we have used that diag (f m(θ))d =



Algorithm 1 The IAPEBS algorithm

1: Initiate d(0) by taking steps 4-11 for data y1 only.

2: Set k = 0
3: repeat {Dictionary learning scheme}

4: Take NLS step θ
(k+1) = argmin

θ

q(θ,d(k))

5: Initiate u(0) = d(k), z(0) = z(save), i = 0
6: repeat {ADMM scheme}
7: z(i+1) = argmin

z

Lκ(z,u
(i),d(i))

8: u(i+1) = argmin
u

Lκ(z
(i+1),u,d(i))

9: x(i+1) = x(i) − (z(i+1) − u(i+1))
10: i← i+ 1
11: until convergence

12: Set d(k+1) = u(end), and z(save) = z(end)

13: k ← k + 1
14: until convergence

diag(d) f m(θ). However, solving (19) is a hard problem, as

f (·) is a non-convex function of θ, as is its product with d.

On the other hand, for a fixed θ, the minimization is the ordi-

nary LASSO with block sparsity for complex sinusoids (see,

e.g., [16]), where W diag (f m(θ)) may be seen as a phase-

shifted dictionary at sensor m with respect to the correspond-

ing DOA. Adopting a dictionary learning framework reminis-

cent to the one used in [13, 14], the problem is split in two

sub-problems. In the first, we fix the DOAs, and (19) may

be solved via one of the freely available interior point solvers,

such as SeDuMi [17] and SDPT3 [18]. However, such solvers

will typically scale poorly with increasing data length, the use

of a finer grid of candidate pitches, and/or the number of sen-

sors. Such methods may thus in many cases be computation-

ally cumbersome, and we here introduce an efficient ADMM-

based formulation of (19). To do so, one splits the objective

function into two parts, where we let one contain the squared

residual error, and the second the sparsity constraints, where-

after an auxiliary variable is introduced, such that

minimize
z,u

g1(z) + g2(u) subj. to z− u = 0 (20)

since only z = u is a feasible point, and where

g1(z) =
1

2

M
∑

m=1

∥

∥

∥
ym −W diag (f m(θ)) z

∥

∥

∥

2

2
(21)

g2(u) = λµ

P
∑

p=1

∥

∥uk

∥

∥

2
+ λ(1− µ)

∥

∥u
∥

∥

1
(22)

are convex functions. Under the assumption that there is no

duality gap, which, for a fixed θ, is true for (18), one may

solve the optimization problem via the dual function, defined

as the infimum of the augmented Lagrangian with respect to

D
O

A
 θ

2

DOA θ
1

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

Fig. 1. Level curves for the function in (28), for a multi pitch

signal containing two pitches, both originating from −30◦.

z and u, i.e., [19]

Lκ(z,u,x) = g1(z) + g2(u) + xT (z− u) +
κ

2
||z− u||22

where x is the dual variable. The ADMM method solves this

iteratively by, at step i+1, minimizing the Lagrangian for one

primal variable while holding the other fixed at its previous

value, and then updating the dual variable by taking a gradient

ascent step and maximizing the dual function, i.e.,

z(i+1) = argmin
z

Lκ(z,u
(i),d(i)) (23)

u(i+1) = argmin
u

Lκ(z
(i+1),u,d(i)) (24)

x̃(i+1) = x̃(i) − κ(z(i+1) − x̃(i+1)) (25)

where κ is the step size for maximizing the dual function,

and x̃ = x/κ is the scaled version of the dual variable, which

is more convenient for implementation (see [19] for further

details on these aspects). The function in (23), which is

quadratic, can be solved in closed form as

z(i+1) =

(

M
∑

m=1

W̃
H

mW̃m + κIPLmax

)−1

×

(

M
∑

m=1

W̃
H

mym + u(i) + x(i)

)

(26)

where W̃m = W diag (f m(θ)) denotes the phase-shifted dic-

tionary at sensor m. The function in (23), i.e., the primal

variable for the sparsity constraints, is obtained by solving

sub-differential equations, yielding

u(i+1) = h
(

h′

(

z(i+1) − x(i), λµ
)

, λ(1− µ)
)

(27)
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Fig. 2. The PWL and RMSE for a single-pitch signal as com-

pared with the optimal performance of an estimator reaching

the CRB.

where h (b, ξ) = b (1− ξ/ ‖b‖2)
+

, for a vector b and a pos-

itive scalar ξ, with (·)+ denoting the identity function for fi-

nite values and zero otherwise, and h′(·) defined similarly but

operate element-wise on b (see also [5]). The resulting esti-

mate of d(k) is then inserted into the second subproblem of

the dictionary learning scheme, i.e.,

q(θ,d(k)) =
1

2

∥

∥

∥
Y −W diag(d(k))F(θ)

∥

∥

∥

2

F

(28)

which is minimized for θ, and is equivalent to performing

a dictionary learning update to the phase-shifted dictionary,

W̃m, which was used in the ADMM procedure, i.e., (20)-

(27). Figure 1 illustrates the cost function in (28) after a

few dictionary learning iterations of the proposed algorithm,

showing that although the cost function will not be convex,

it is unimodal for DOAs in the range [−90, 90]◦ and may

thus be easily solved using a few iterations of, for instance,

Newton-Raphson’s method. To summarize, an algorithm out-

line of the proposed metod is stated in Algorithm 1, where it

may be noted that the inner ADMM scheme takes fewer and

fewer steps at every iteration of the outer dictionary learn-

ing scheme, until convergence is reached and only a single

ADMM step is taken. The sparsity parameter λ is chosen

with cross validation in a similar fashion as performed in [20],

but the estimates are rather unsensitive with respect to this

choice. The proposed method requires estimating a total of

PLmax +M parameters, which is considerably fewer than the

recent sparse method presented in [15], which required esti-

mating PLmaxM parameters.
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Fig. 3. The PWL and RMSE for a multi-pitch signal with two

pitches, as compared to the corresponding CRB.

4. NUMERICAL RESULTS

We proceed to illustrate the performance of our proposed

method, as compared to other recent methods, using syn-

thetic audio signals. As the fundamental frequencies are

estimated on a discrete dictionary grid, comparison is made

using a percentage within limits (PWL) metric, defined as the

ratio of pitch estimates within a range of ±1/4 Hz from the

true values. For DOA comparison, the total root mean square

error (RMSE) is used for all sources, defined as

RMSEθ =

√

√

√

√

1

nK

K
∑

k=1

n
∑

i=1

(

θ̂k,i − θk

)2

(29)

where n is the number of Monte Carlo (MC) simulation es-

timates, and K is the number of pitches in the signal. Fig-

ure 2 shows the PWL of the fundamental frequency, as well

as the RMSE for the DOA, for a signal containing a single

pitch with f1 = 220 Hz and L1 = 7 harmonics, impinging

on a 5-sensor ULA from direction θ1 = −30◦. These results

have been computed using 250 MC simulations, assuming a

sampling frequency of fs = 8820 Hz, a sound wave prop-

agation velocity of γ = 324.3 m/s, and a sensor spacing of

δ = γ/fs = 3.84 cm. The sensor gains may be obtained from

a covariance matrix estimate on the measurement matrix Y,

but are, in these simulations and without loss of generality, set

to c1 = · · · = cM = 1. The figures show the performance for

growing signal-to-noise ratios (SNRs), defined as

SNR = 10 · log

(

Psignal

Pnoise

)

(dB) (30)

As is clear from the figures, the proposed method, here termed

the iterative array DOA and pitch estimator using block spar-



sity (IAPEBS), performs similarly to the recently proposed

APEBS estimator [15], and the NLS-based estimator pro-

posed in [6], achieving a performance close to the Cramér-

Rao lower bound (CRB). The subspace-based method (Sub),

also introduced in [6], is found to yield a somewhat lower

performance. Figure 3 shows the corresponding perfor-

mance for a multi-pitch signal consisting of two pitches,

with [ω1, ω2] = [150, 220] Hz, and with [L1, L2] = [7, 6] har-

monics, impinging from directions [θ1, θ2] = [−30,−30]
◦
.

As the NLS and Sub estimators only allow for single pitch

signals, the figure only shows the performance of IAPEBS,

as compared with APEBS and the corresponding CRB. As is

clear from the figures, the IAPEBS estimator yields highly

accurate parameter estimates, almost reaching the CRBs, no-

tably improving the achievable performance as compared to

the APEBS estimator, which decouples the estimation into

first estimating the pitches, whereafter the DOAs are deter-

mined in a second step. This should be compared with the

here proposed iterative estimation scheme, which enables a

better joint estimation of pitch and DOA.
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