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ABSTRACT

This paper presents a new variational Bayes algorithm for the

adaptive estimation of signals possessing group structured

sparsity. The proposed algorithm can be considered as an

extension of a recently proposed variational Bayes frame-

work of adaptive algorithms that utilize heavy tailed priors

(such as the Student-t distribution) to impose sparsity. Vari-

ational inference is efficiently implemented via appropriate

time recursive equations for all model parameters. Exper-

imental results are provided that demonstrate the improved

estimation performance of the proposed adaptive group sparse

variational Bayes method, when compared to state-of-the-art

sparse adaptive algorithms.

Index Terms— variational Bayes, structured sparsity,

adaptive estimation, group sparse Bayesian learning

1. INTRODUCTION

In recent years, compressive sensing (CS) theory has received

considerable attention in the signal processing literature. CS

is mainly concerned with the estimation of sparse signals via

the solution of an underdetermined linear system of equa-

tions. Recent developments in CS theory have also sparked

new research interest in the adaptive estimation of sparse sig-

nals. This is an interesting challenge, as sophisticated, fast

adaptive algorithms are needed in various applications to per-

form sparse system identification in an online fashion. A

number of deterministic algorithms have been recently pro-

posed to address this task, e.g., [1, 2]. These algorithms can

be considered as regularized variants of the recursive least

squares (RLS) algorithm and utilize the well-documented ℓ1
norm to promote sparsity.

It is also interesting to note that sparsity in natural and

man-made signals and systems often comes with some form

of structure, in the sense that nonzero signal coefficients are

usually clustered together. This observation has led to some

first attempts to exploit group sparsity in order to achieve bet-

ter estimation performance. A typical example is the recur-
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sive ℓ1,∞ group lasso, recently proposed in [3]. As its name

suggests, the recursive ℓ1,∞ group lasso utilizes the LS cost

function penalized by the ℓ1,∞ norm to impose group sparsity.

In the same fashion, an RLS variant is proposed in [4], where

the ℓp,0 norm is used instead. However, both these algorithms

are of deterministic nature and their estimation performance

largely depends on parameter fine tuning.

In this paper we exploit the Bayesian framework to ad-

dress the problem of group sparse system identification. In

this context, we describe an adaptive variational Bayes al-

gorithm that is specifically tailored to perform inference for

group sparse, time varying signals. In our modeling, sig-

nal coefficients are assumed to be clustered in equally sized

groups. To promote group sparsity, the proposed scheme

utilizes a hierarchical Bayesian model based on the heavy-

tailed multivariate Student-t distribution. Variational infer-

ence on the proposed model is then presented, both in batch

and adaptive mode, by deriving appropriate recursive update

equations. The proposed scheme can also be considered as an

extension to the case of group sparse signals of a probabilistic

family of adaptive algorithms recently presented in [5, 6].

Experimental results show that the new algorithm succeeds

in exploiting group sparsity very effectively and exhibits bet-

ter estimation performance in comparison to other related

state-of-the-art sparse adaptive schemes.

2. PROBLEM FORMULATION

Let w(n) = [w1(n), w2(n), . . . , wN (n)]T be an N - dimen-

sional unknown signal vector that may be varying in time. We

assume that w(n) has structured sparsity, in the sense that it

has ξ ≪ N nonzero elements, which are aligned in equally

sized groups within the N -dimensional vector, as explained in

the next section. Let y(n) = [y(1), y(2), . . . , y(n)]T be a n-

dimensional vector of observations at time instant n and X(n)
denote a n×N known data matrix, i.e., X(n) = [x(1),x(2),

. . . ,x(n)]
T

. The relationship between y(n), X(n) and w(n)
is assumed to be linear, following the regression model

y(n) = X(n)w(n) + ǫ(n), (1)

where ǫ(n) is a n-dimensional vector of additive zero mean

uncorrelated Gaussian noise. By utilizing the set of observa-

tions and data, {y(n),X(n)}, the signal vector w(n) can be



sequentially estimated in time. To this end, the recursive least

squares (RLS) algorithm solves the following minimization

task over time,

min
ŵ(n)

n
∑

k=1

λn−k|y(k)− xT (k)ŵ(n)|2, (2)

where 0 ≪ λ < 1 is the forgetting factor. In vector notation,

the previous LS cost function can be expressed as,

min
ŵ(n)

‖Λ1/2(n)y(n)−Λ
1/2(n)X(n)ŵ(n)‖2, (3)

where Λ(n) = diag([λn−1, λn−2, . . . , 1]T ).
In this paper we are interested in developing a time adap-

tive estimator for the group sparse weight vector w(n). Fol-

lowing the Bayesian approach, (c.f. [5]), we employ a hier-

archical Bayesian model emanating from the sparse Bayesian

learning framework, [7], and we establish an adaptive varia-

tional Bayes scheme that performs online approximate infer-

ence for all model parameters.

3. BAYESIAN MODELING

We consider first the Bayesian modeling of the batch opti-

mization problem first and, to simplify notation, we temporar-

ily drop the time index n from all model parameters. Time in-

dexing is restored in Section 5, where the adaptive variational

Bayes scheme is presented.

Accounting for the presence of the forgetting factor λ in

(3), the additive noise in (1) is assumed to be distributed as

ǫ ∼ N (ǫ|0, β−1
Λ

−1). This gives rise to the following likeli-

hood function

p(y|w,β) =
β

n

2 |Λ|
1

2

(2π)
n

2

exp

[

−
β

2
‖Λ

1

2y −Λ
1

2Xw‖2
]

, (4)

where | · | stands for matrix determinant. Notice that the max-

imum likelihood (ML) estimate of w based on (4) is exactly

the LS solution obtained by solving (3). To further perform

inference on the model parameters β and w and to impose

group sparsity on w, we equip our Bayesian model with ap-

propriate conjugate priors. First, for the precision parameter

β we assume a conjugate Gamma prior that guarantees the

positivity of this parameter, i.e.,

p(β; ρ, δ) = G(β; ρ, δ) =
δρ

Γ(ρ)
βρ−1exp [−δβ] . (5)

Next, we assume that w consists of M groups of D coeffi-

cients each, (i.e., N = MD), where M is known a priori. Let

us consider the grouping w = [wT
1 ,w

T
2 , . . . ,w

T
M ]T , where

wm is the D × 1 weight component corresponding to the m-

th block of w. We assign an independent zero-mean Gaussian

prior N (wm|0,β−1α−1
m ID) to each wm, i.e,

p(w|α,β) =
M
∏

m=1

(2π)
−D

2 β
D

2 α
D

2

m exp

[

−
β

2
αm‖wm‖2

]

,

(6)

with α = [α1,α2, . . . ,αM ]T . To define a conjugate form of

a multivariate Student-t prior for each group of coefficients

wm, we select a Gamma distribution for the precision param-

eters αm in the second level of hierarchy, i.e.,

p(αm) = G(αm; c,
a

2
) =

(a2 )
c

Γ(c)
αc−1
m exp

[

−
a

2
αm

]

. (7)

By integrating out the precision parameters α, it can be easily

shown that the prior on w is expressed as,

p(w) =

∫

p(w|α)p(α; c,
a

2
)dα =

M
∏

m=1

St2c(0,
a

2cβ
ID),

(8)

where Stν(ζ,Υ) denotes the standard multivariate Student-t

distribution with location ζ, scale matrix Υ and ν degrees of

freedom. Notice that the heavy tailed Student-t distribution is

known to promote sparsity and has been widely used in the

sparse Bayesian learning framework, [8]. Thus, our Bayesian

model favors group sparsity on the weight vector w, and it can

be considered as a natural extension of the sparse Bayesian

learning (SBL) model, [8], in the case of structured sparsity.

4. VARIATIONAL BAYESIAN INFERENCE

Due to the complexity of the proposed Bayesian model, the

posterior of interest, p(w,β,α|y), cannot be explicitly com-

puted. In this paper we rely on the variational methodology to

perform Bayesian inference, extending the approach followed

in [5,6] to a group sparsity scenario. In the variational frame-

work it is common to use the mean field approximation for

the posterior p(w,β,α|y), utilizing a distribution q(w,β,α)
of the factorized form

q(w,β,α) = q(β)

M
∏

m=1

q(wm)

M
∏

m=1

q(αm). (9)

Then, our goal is to minimize the Kullback-Leibler distance

between the true posterior p(w,β,α|y) and the approximat-

ing distribution q(w,β,α). For this task, the assumed pos-

terior independence between the grouped model parameters

makes the approximating factors in the right hand side of (9)

tractable. Let θ be the vector containing all model parame-

ters, i.e., θ = [wT
1 , . . . ,w

T
M ,β,α1, . . . ,αM ]T , and θi denote

either a wT
j , or a αj , j = 1, . . . ,M , or β. Then, it is known

from the variational Bayes theory, [9], that

q(θi) =
exp (Ej �=i [logp(y,θ)])

∫

exp (Ej �=i [logp(y,θ)]) dθi
, (10)

where Ej �=i [·] denotes expectation w.r.t. all q(θj)’s except for

q(θi). Applying (10) for all parameters of interest, we get for

each wm that

q(wm) = N (wm;µm,Σm) = (2π)−
D

2 |Σm|−
1

2



exp

[

−
1

2
(wm − µm)TΣ−1

m (wm − µm)

]

, (11)

where

Σm = 〈β〉−1(XT
mΛXm + 〈αm〉ID)−1, (12)

µm = 〈β〉ΣmXT
mΛ(y −X

¬mµ
¬m), (13)

where 〈·〉 denotes expectation with respect to q(·). Letting the

columns of X to be separated in M n ×D groups according

to the partitioning of w, i.e., X = [X1,X2, . . . ,XM ], X
¬m,

µ
¬m result from X, w after removing Xm, µm respectively.

For the approximating posterior of the noise precision β we

get the conjugate posterior distribution

q(β) = G(β; ρ̃, δ̃), (14)

with ρ̃ = n+MD
2 + ρ and

δ̃ = δ +
1

2

〈

‖Λ
1

2y −Λ
1

2Xw‖2
〉

+
1

2

〈

M
∑

m=1

αm‖wm‖2

〉

.

(15)

Next, for the precision parameters of the groups wm’s we get

the approximating Gamma distribution,

q(αm) = G(αm; c+
D

2
,
〈β〉〈‖wm‖2〉

2
+

a

2
). (16)

The means of the parameters of θ are :

〈wm〉 ≡ µm, m = 1, . . . ,M ,

〈β〉 =
n+MD + 2ρ

2δ +
〈

‖Λ
1

2y −Λ
1

2Xw‖2
〉

+
∑M

m=1 〈αm〉 〈‖wm‖2〉

(17)

〈αm〉 =
2c+D

〈β〉〈‖wm‖2〉+ a
,m = 1, . . . ,M. (18)

Clearly, these quantities are interrelated. This results to a

cyclic updating mechanism, termed as variational Bayes al-

gorithm, [9]. This algorithm progresses as follows: we ini-

tialize all parameter means first, and we update each mean in

a cyclic manner, by keeping all the remaining fixed.

We observe from (11), (14) and (16) that some second

order moments are required for the updating of the posterior

means, i.e.,
〈

‖wm‖2
〉

= µ
T
mµm + tr(Σm) and, (19)

〈

‖Λ
1

2y −Λ
1

2Xw‖2
〉

= ‖Λ
1

2y −Λ
1

2

M
∑

m=1

Xmµm‖2

+
M
∑

m=1

tr(ΣmXT
mΛXm) (20)

Using these moments, the updating of the proposed varia-

tional Bayes scheme converges to a sparse estimate µ =
[µT

1 ,µ
T
2 , . . . ,µ

T
M ]T for the unknown signal vector w in a

few iterations.

Initialize β(0), ŵ(0),A(−1),A(0),R(0), z(0), d(0)

Set a, b, ρ, δ to very small values

for n = 1, 2, . . .

R(n) = λR(n− 1) + x(n)xT (n)
−λA(n− 1)⊗ ID +A(n)⊗ ID

z(n) = λz(n− 1) + x(n)y(n)

d(n) = λd(n− 1) + y2(n)

β(n) = ((1− λ)−1 +N + 2ρ)/(2δ + d(n)

−zT (n)ŵ(n− 1)+
∑M

m=1 tr[
R

−1

m
(n−1)

β(n−1) Rm(n)])

for m = 1, 2, . . . ,M

ŵm(n) = R−1
m (n) (zm(n)−Rm¬m(n)ŵ

¬m(n))

αm(n) = 2c+D
a+β(n)‖ŵm(n)‖2+tr(R−1

m (n))

end for

end for

Table 1. The AGSVB-S algorithm

5. ADAPTIVE VARIATIONAL GROUP SBL

In the previous section we have described a variational Bayes

scheme based on the Bayesian modeling of Section 3 that per-

forms inference for the time invariant signal vector w in a

batch mode. Let us now restore time indexing and extend the

variational Bayes scheme in an adaptive setting, where the

weight vector w(n) is now time varying. To facilitate com-

putations we define the following time dependent quantities,

R(n) = XT (n)Λ(n)X(n) +A(n− 1)⊗ ID, (21)

z(n) = XT (n)Λ(n)y(n), (22)

d(n) = yT (n)Λ(n)y(n), (23)

where A(n) = diag(α(n)) and ⊗ denotes the Kronecker

product. These quantities can be updated recursively, i.e.,

R(n) = λR(n− 1) + x(n)xT (n)

− λA(n− 2)⊗ ID +A(n− 1)⊗ ID (24)

z(n) = λz(n− 1) + x(n)y(n), (25)

d(n) = λd(n− 1) + y2(n). (26)

We can identify R(n) as the sample auto-correlation matrix

of x(n) regularized by the diagonal matrix A(n − 1) ⊗ ID,

z(n) as the sample cross-correlation vector between x(n) and

y(n), and d(n) as the energy of the observation vector y(n).
Substituting (12) in (13) and utilizing (21) and (22), the adap-

tive weights ŵm(n)(= µm(n)) can be efficiently time up-

dated as follows 1

ŵm(n) = R−1
m (n) (zm(n)−Rm¬m(n)ŵ

¬m(n)) , (27)

where zm is the m-th D × 1 block of z, Rm(n) is the m-th

D×D diagonal block of R(n), Rm¬m(n) is the D×(N−D)

1It can be shown that (27) represents a block coordinate descent updating

rule, [10].



matrix resulting from the m-th row block of R(n) after

removing its m-th group of D columns, and ŵ
¬m(n) =

[ŵ1(n), . . . , ŵm−1(n), ŵm+1(n − 1), . . . , ŵM (n − 1)]T .

Moreover, based on [6], it can be shown that noise precision

is efficiently computed as follows,

β(n) = ((1− λ)−1 +N + 2ρ)/(2δ + d(n)

− zT (n)ŵ(n− 1) +

M
∑

m=1

tr[Σm(n− 1)Rm(n)]), (28)

where Σm(n − 1) = β−1(n − 1)R−1
m (n − 1) according to

(12). Finally, straightforward computations using (18), (13)

and (19) yield that the updating of the precisions αm is per-

formed as

αm(n) =
2c+D

a+ β(n)‖ŵm(n)‖2 + tr(R−1
m (n))

. (29)

The resulting algorithm is termed Adaptive Group Sparse

Variational Bayes based on a multivariate Student-t prior

(AGSVB-S) and is summarized in Table 1. To the best of our

knowledge, AGSVB-S is the first group-sparsity promoting

adaptive algorithm that originates from a Bayesian frame-

work. As it will be shown in the next section, the proposed

algorithm exploits structured sparsity very effectively and, at

the cost of a slight increase in computational complexity, it

offers the best estimation performance compared to related

state-of-the-art techniques. Notably, this is achieved in a

fully automated manner, by entirely alleviating the need for

parameter cross-validation and fine-tuning.

6. EXPERIMENTAL RESULTS

In this section we consider the adaptive estimation of a group

sparse multipath wireless channel. The AGSVB-S algorithm

is compared with state-of-the-art adaptive algorithms, e.g.,

the time-norm weighted lasso (TNWL), [2], and the recently

proposed adaptive sparse variational Bayes with a Student-

t prior (ASVB-S), [6], in order to validate its performance.

Additionally, the genie-aided RLS (GARLS), which operates

only on the nonzero coefficients of the parameter vector w, is

also included as a benchmark.

In our experiments we consider a group sparse Rayleigh

fading channel partitioned in M = 16 groups. Each group

contains D = 4 coefficients for a total of 64 weight coeffi-

cients. Only T = 3 groups are assumed to be nonzero. The

nonzero coefficients vary in time according to Jakes model,

[11]. The input sequence is a random ±1 sequence of length

1000 and the forgetting factor λ is set to 0.99. All the hyper-

parameters a, c, ρ and δ are set to 10−6. Noise is assumed to

be white Gaussian, and its variance is adjusted so as to get an

SNR level of 12dB in all experiments. The normalized mean

square error, defined as NMSE = E
[

‖w − ŵ‖2
]

/E
[

‖w‖2
]

,
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Fig. 1. NMSE curves under slow fading and a sudden channel

change.
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Fig. 2. NMSE curves in a fast fading scenario.

is used to assess the performance of the algorithms. All per-

formance curves are ensemble averages of 200 transmission

packets, channels, and noise realizations

In the first experiment, we consider a Rayleigh fading

channel with an abrupt change at time instant n = 500; an

extra nonzero group is added to the channel coefficients. For

the remaining time period, a slow fading environment is simu-

lated by setting the normalized Doppler frequency to fdTs =
5×10−5. Fig. 1 shows the NMSE curves of the considered al-

gorithms. It is observed that the performance of the proposed

AGSVB-S before the abrupt change is near optimum, i.e., it

converges as fast as the GARLS algorithm at approximately

the same error floor. This performance improvement with re-

gard to ASVB-S is theoretically expected and is justified by

the fact that AGSVB-S exploits the sparsity structure of the
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Fig. 3. NMSE curves for correlated input.

weight coefficients. In Fig. 1 it is also observed that AGSVB-

S has the ability to track the channel’s abrupt change, since

after a sudden NMSE fluctuation, it converges faster that the

other algorithms to the error floor of the GARLS, again.

In the second experiment, the tracking capability of the

proposed AGSVB-S algorithm is explored, this time in a fast

fading environment. In this setup, we set the normalized

Doppler frequency to fdTs = 8.35× 10−4 and the forgetting

factor to λ = 0.98. The NMSE curves of the adaptive algo-

rithms considered are shown in Fig. 2. It is easy to verify

that AGSVB-S has, again, the overall best performance. Its

convergence speed is similar to that of GARLS, and it reaches

the same best achievable error floor after convergence.

In the next experiment we evaluate the performance of

the algorithms in the case of correlated input. To this end,

we lowpass filter a Gaussian sequence of zero mean and unit

variance in order to generate a colored input sequence. In our

experiments, a 5th order Butterworth filter is used, with a cut-

off frequency 1/4 the sampling rate. The remaining settings

are the same as in the first experiment. In Fig. 3 the result-

ing NMSE curves for all adaptive algorithms are depicted. In

comparison to Fig. 1, a considerable degradation in terms of

NMSE performance is observed, owning to the worse con-

ditioning of the autocorrelation matrix R(n). Interestingly,

both RLS and GARLS seem to diverge. This is not surprising,

since, RLS is known to be sensitive to input signal correlation,

as noted in [12]. On the contrary, the proposed AGSVB-S has

now a slower convergence rate but achieves the lowest esti-

mation error among the considered algorithms.

7. CONCLUSION

We have presented an adaptive variational group sparse

Bayesian learning algorithm. The proposed scheme is fully

automated but requires a priori knowledge of the structure

of the signal sparsity, as is common in most group sparse

schemes. Experimental results have demonstrated the robust-

ness of the proposed variational scheme under different cir-

cumstances. A further development of the proposed scheme

that is currently under investigation is the incorporation of

the group length as a parameter in our model, perhaps via an

appropriate discrete prior distribution.
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