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ABSTRACT

The problem of correlation detection of multivariate Gaussian
observations is considered. The problem is formulated as a
binary hypothesis test, where the null hypothesis corresponds
to a diagonal correlation matrix with possibly different diago-
nal entries, whereas the alternative would be associated to any
other form of positive covariance. Using tools from random
matrix theory, we study the asymptotic behavior of the Gener-
alized Likelihood Ratio Test (GLRT) under both hypothesis,
assuming that both the sample size and the observation di-
mension tend to infinity at the same rate. It is shown that the
GLRT statistic always converges to a Gaussian distribution,
although the asymptotic mean and variance will strongly de-
pend the actual hypothesis. Numerical simulations demon-
strate the superiority of the proposed asymptotic description
in situations where the sample size is not much larger than the
observation dimension.

Index Terms— Hypothesis testing, correlation matrix,
random matrix theory, central limit theorem.

1. INTRODUCTION

The detection of correlation between multiple signals is a
mathematical problem that arises in multiple fields and appli-
cations of very different nature. This is the case, for instance,
of sensor networks, multi-antenna radar or cognitive radio
applications, where the presence of a directional signal re-
sults in strong correlations between the signals received at
the multiple antennas or sensors. In all these applications, the
absence of an external source leads to spatially uncorrelated
signals, whereas the presence of directional sources results
in high correlation of the signals received at the different
sensors/antennas. Therefore, one may formulate the signal
detection problem in all these contexts as a binary hypothesis
test on the signal correlation matrix: the null hypothesis (ab-
sence of signal) would correspond to a diagonal correlation
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matrix, whereas the alternative (presence of signal with in-
definite spatial structure) would be associated to the presence
of a signal with non-diagonal correlation matrix.

Let us denote by y,, an M x 1 column vector that contains
the measurements collected by the M sensors or antennas at
the nth time instant. We will model these measurements as
Gaussian random vectors:

(Asl) The set of M-dimensional observations y,,, n =
1,...,N, N > M, are independent and identically distrib-
uted complex random vectors, such that their real and imagi-
nary parts are zero mean Gaussian distributed with covariance
0.5R ;. This will be denoted as y,, ~ CA (0, Rypy).

Let D) denote an M x M diagonal matrix that contains
the diagonal elements of the correlation matrix Rjy;. The
main interest of this paper is on the following hypothesis test-
ing problem:

Ho CYn Y CN(O,RM), RM = DM
Hi:yn ~CN(0,Ru), Ry # Dy

It should be stressed here that, contrary to the well-known
sphericity test [1, p.431], the null hypothesis here does not re-
quire the correlation matrix to be proportional to the identity
matrix. This allows for more general settings in sensor net-
works or uncalibrated antenna arrays, where the background
noise power is not necessarily the same at all receivers.

There exist several tests in the literature dealing with the
above problem, although perhaps the most prominent one is
the Generalized Likelihood Ratio Test (GLRT), see [2]. In
order to formulate this test, let us consider the sample corre-
lation matrix R 5/, which is constructed as

1 N
® o H
Ry =+ ;ynyn

and let D, denote the diagonal matrix constructed from the
diagonal entries of Rj;. We will denote by Cj; the sample
coherence matrix, defined as

Cor = D V2Ry D2



where ]3}\//12 is the positive square root of D ;. One can eas-
ily see that, after replacing the covariance matrices under both
hypothesis with their maximum likelihood estimates, the log-
arithm of the quotient of the likelihood functions is propor-
tional to the statistic

g = _Ml log det (CM) (1)

where the normalization factor —M ~! is introduced for rea-
sons that will be come apparent below. Hence, the GLRT is
constructed for a given threshold « as

Ha
ﬁ M 2 Q.

Ho
The threshold « is in practice selected in order to guarantee
a certain probability of false alarm (Type I error probability),
which is obtained from the distribution of 75, under the null
hypothesis. In order to obtain such a result, the literature typi-
cally relies on the asymptotic regime obtained when the sam-
ple size NV increases to infinity for a fixed M.

2. CLASSICAL ASYMPTOTICS

It is well known [2] that, under H,,
A Lo 2
2MNin 2 33y

where % denotes convergence in law under! 7, and where
X% is a central chi-square distribution with p degrees of free-
dom. Hence, one could in principle use this asymptotic law
in order to fix the threshold « for a given false alarm prob-
ability. However, it was shown in [3] (real-valued case) and
[4] (complex case) that this approximation is very poor for
moderate values of the sample size, and a better asymptotic
fit can be obtained by considering the following Box-Barlett
correction:

Po (2M Npijnr < ) =P (X2 pr < ) +
+uwy [P (X?WLMH <z)-P (X?WLM < 93)]+0(N73)
2

where Py is the probability under Hy, and where we have
defined p =1+ (M +1) /3N,

1 XM
B(1-pN+1—-4¢)—-B((1-p)N
6 (N ) 13:1( (L=p)N+1-6) = B((1=-p)N))

Wy =

and B(z) = 2® — 1.52% 4 0.52. In parallel with this, it was
recently shown in [5] that under the null hypothesis 7jy; can
be represented as a product of independent beta-distributed

'When no subindex is specified in £, it is understood that convergence in
law occurs under both hypothesis.

random variables, a fact that was used in order to derive an
alternative asymptotic approximation of the law of 7, for
large sample sizes.

Regarding the power of the test, it was shown in [4] that
for sufficiently large sample size (/V) and fixed M, one may
approximate

Py (2M Npijps < @) = P (X2 pr 2MNpny) <) (3)

where x2 ()) is the non-central chi square distribution with p
degrees of freedom and noncentrality parameter A and where

N = Ml log det (Cypr)

with Cj; denoting the true coherence matrix, defined as
Cy = D;;/ 2RMD]_Ml/ ®. Now, the above approximations
turn out to be very accurate for moderately high sample vol-
ume N and relatively low observation dimension M. We will
see below that when M becomes large enough and tends to
be comparable in magnitude to the sample size IV, the above
approximations are no longer valid. In the next section, we
propose to follow an alternative asymptotic approach that
assumes that both M and N are large but comparable in mag-
nitude. Using this approach, we will derive more accurate
approximations of the level of significance and the power of
the GLRT for the situation where the observation dimension
is large.

3. PROPOSED APPROACH

In this section, we will derive an asymptotic characterization
of the GLRT statistic under the assumption that both M and
N increase without bound.

We will use the following assumptions:

(As2) The observation dimension M is a function of N
and limy_ooc M/N =¢,0< c< 1.

(As3) If Apin (Ras) and Apax (Ras) denote the mini-
mum and maximum eigenvalues of the Hermitian matrix R,
inf a7 Amin (RM) > 0 and Sup s Amax (R]u) < 00.

To study the asymptotic behavior of 7, under the above
assumptions, we will first formulate the statistic 7jy; in terms
of quantities that can be easily analyzed using random matrix
theory methods. For z € CT (upper complex semiplane), let
us define the two complex functions s (2) and bys(z) as

g (2) = % tr {(RM - zIM)_l]
ba(z) = % tr |:(f)M - ZIM)I} -

These functions can be seen as the Stieltjes transforms of
the empirical distribution of the eigenvalues of R and its
diagonal entries, respectively. We consider two real values
a, b, defined as @ = infy; Amin (Ras) (1 — /©)° and b =



supas Amax (Raz) (1 + 1/€)°, and define S as an open inter-
val containing [a, b] and not {0}. It is well know that for suffi-
ciently large M almost surely all the eigenvalues of R (and,
hence, all its diagonal values) are inside S [6]. Therefore, one
can express the statistic 75, as

. 1
M = 5—

b 9(ar ()= ()

(Z)’I"h]u(z)dz + %(] o
where f(z) and g(z) are two appropriate holormorphic func-
tions on C\R™ and where C~ is the clockwise oriented sim-
ple contour C that intersects the real axis at two points, i.e.
CNR={z",z"}, such that z~ € (0,a) and z* € (b, 00).
More specifically, in order to retrieve (1), one needs to set
g(z) = —f(z) = log z in the above expression. We will leave
f(z) and g(z) unspecified in order to derive a more general
asymptotic result.

3.1. First order behavior: almost sure convergence of 7),,

It is well known [7] that under (Asl) — (As3), 1 (z) —
mar(z) — 0 almost surely for all z € CT as M, N — oo,

where
N-M N 1

Mz  Mwy(2)

T7LM(Z) =

and where w)y (2) is the unique solution in C™ to the follow-
ing polynomial equation

z=wp (2) <1 — %tr {RM Ry — war (2) IM)_1}> .
)

Using classical random matrix techniques, it is not difficult
to see that by(z) — bar(z) — O where by () is defined
as bys(z), replacing Dy with Dys. Loosely speaking, this
means that the asymptotic distribution of the diagonal entries
of Ry is the same as the asymptotic distribution of the diag-
onal entries of R, (assuming that it exists). This is in stark
contrast with the asymptotic distribution of the eigenvalues of
R » and Ry, which do not coincide at all under this asymp-
totic regime.

Using the convergence of the above functions together
with the dominated convergence theorem, one can show that
under (Asl) — (As3), 1y — fiar — 0 almost surely, where
7N 1s defined as

1 1 -
v = — T — b .
i = g F@m (e + 3= o))
For the particular choice g(z) = —f(z) = log z, one can use

the integration technique developed in [8] to show that

N-M 1 N
og| ——|.
M S\ N—M
It is interesting to observe that the GLRT statistic does not
converge to 175, when we allow the observation dimension to

v=nm+1-—

increase with V. Instead, a bias term appears that critically
depends on the quotient ¢y = M/N. Observe that this bias
term disappears when cy — 0, agreeing with the fact that
s — M When N — oo for a fixed M. We next provide a
more interesting result that characterizes the asymptotic fluc-
tuations of 75, around 77,/ in this asymptotic regime.

3.2. Second order behavior: asymptotic fluctuations of
M

We next present the central contribution of this paper, which
describes the asymptotic second order behavior of 77, around

fiar for two general complex functions g(z) = f(z) that are
holomorphic on C\R™.

Theorem 1. Let p1p; and o3, be two deterministic quantities
defined as py; = ﬁ tr [D3,9” (Da)] and

where g' and g' are the first and second order derivatives
of g and where Fy(w) = f(z) with z replaced by the right
hand side of (5) as a function of w = wpy(z). Assume that
supyy |par| < 0o and that 0 < inf s [03;| < supy, |o3,] <
0o. Then, under (Asl) — (As3),

ot (M (g — ) — pnr) i>/\/’(O, 1).

Proof. To prove this result, we may follow the same approach
as in [9]. More specifically, we define Wy, (u) as the charac-
teristic function of the random variable M (7jas — 7as), that
is Ups (u) = Elexp (juM (far — 7jar))]. The main idea of
the proof consists in showing that

P _ (5 uas o) o () + o)) (©
where p 5 and a%/[ are as in the statement of the theorem, and
where the term o(1) converges to zero uniformly in u over
compact subsets. This can be shown by using the integration
by parts formula for Gaussian functionals together with the
Poincaré-Nash inequality (see [9, Section III.B] for further
details). The derivations are quite standard, although some-
what long and tedious, so we choose to omit them here for
the sake of simplicity. The only tricky point in the application
of these tools comes from the fact that the moments of 77,7 (2)
and by (z) do not need to exist when z lies on the positive real
axis. To solve this, one may use a regularization function such
as the one in [10, eq.(27)] multiplying 77 (2) and by (2) to
guarantee that all the realizations of the regularized functions
are bounded for any z € C.



Having shown (6), one can readily solve the correspond-
ing differential equation to conclude that

2
) U
s (u) —exp (J paru — 7@%1) —0
where the second term on the left hand side of the above equa-
tion is the characteristic function of a Gaussian NV (par, 03).
A straightforward modification of [9, Proposition 6] to ac-
count for the presence of 1, leads to the desired result. [

We can particularize the above result to the problem at
hand by computing the expressions of the asymptotic mean
pas and variance o3, under the choice g(z) = —f(z) =
log z. Considering the second order derivative of log z, it is
trivial to see that up, = %1 % On the other hand, a closed
form expression for 03, can be obtained by using again the
technique developed in [8], which shows that

N M 1 2
o3y = log (m) 25ty ICullp

2 . . .
where ||Cy||% is the squared Frobenius norm of Cjy, i.e.

|Cll3 = tr [RyyDy/RuDy/] -

(7

Note that |pp/| is upper bounded by a positive quantity in-
dependent of M by convergence of M/N as described in
(As2). The fact that inf ,; 03, > 0 follows from the inequal-

ity
M

N
U%Zlog(m>—ﬁ>0
again because we assumed that M < N and limp; .., M/N =
¢ > 0. On the other hand, sup,, 02, < oo by convergence of
M/N together with (As3). Therefore, from Theorem 1 one
readily obtains the following corollary.

Corollary 1. Under assumptions (Asl) — (As3),

1M
U];Il {M(ﬁM — ) + §W} i’/\/(071)

where o3, is as defined in (7).

According to this corollary, under both hypothesis the
GLRT statistic asymptotically fluctuates around 75, like a
Gaussian random variable, with mean —0.5/N and variance
o3%,/M?. Hence, in practical applications one might ap-
proximate the asymptotic law of 75, under both hypothesis
as Gaussian random variable N (7a; — 0.5/N, 0%, /M?),
where the actual form of 775, and o', will depend on the con-
sidered hypothesis. In the next section we will see that this
provides a very good approximation of the actual law when
both M,N are large.

The fact that the Frobenius norm of the true coherence
matrix plays a determining role in the asymptotic distribution
of 75, has been well known in the literature, and in fact a
test based on this quantity has been proposed by multiple re-
searchers [2, 4, 11]. An asymptotic characterization of these
tests is, however, out of the scope of this paper.

4. NUMERICAL RESULTS

In this section we evaluate the accuracy of the asymptotic ap-
proximation presented in this paper. To that effect, we con-
sider a large network of sensors that collect Gaussian circu-
larly symmetric signals distributed according to (Asl). Un-
der Hy, the correlation matrix of the observation is diago-
nal Rjy; = Dj; and the diagonal correlation elements take
values between 0 and 1. In the simulations, these values
are randomly fixed according to a uniform law at the begin-
ning of each experiment. Under the alternative hypothesis
‘H1, the signals are assumed to be correlated according to
Ry = Doy + Wy where { @y}, = 0l"=31 | with p a corre-
lation coefficient that is fixed to o = 0.9.

Figures 1 and 2 represent the empirical distribution of the
statistic 7, under both hypothesis obtained with a total set of
10° independent simulation runs when the number of sensors
was M = 20 and the sample volume was fixed to N = 25
and N = 100 respectively. Apart from the empirical dis-
tribution obtained by simulation, these figures also show the
asymptotic distribution obtained for large M, N (as given by
Corollary 1) and the asymptotic distribution obtained with the
classical approximation of large /N and fixed M as given in
equations (2) and (3). We observe that in general the proposed
approximation turns out to be much more accurate than the
classical one, especially in situations where M, N are com-
parable in magnitude. This is also illustrated in Figure 3,
which compares the empirical and the asymptotic Receiver
Operating Characteristic (ROC) curves for different values of
the sample size. Here again, we see that the asymptotic curve
obtained with the proposed approximation is virtually indis-
tinguishable from the empirical one. Furthermore, results are
much more accurate than those obtained with the classical
(large N, fixed M) approximation.
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Fig. 1. Empirical and asymptotic density of the statistic 7,
under the two hypothesis, M = 20, N = 25.



Density of the statistic under HO, M=20, N=100
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Fig. 2. Empirical and asymptotic density of the statistic 7y,
under the two hypothesis, M = 20, N = 100.

5. CONCLUSIONS

We have presented an asymptotic analysis of the GLRT for
a binary hypothesis problem on the covariance matrix of
a set of multivariate complex Gaussian observations. The
null hypothesis corresponds to a diagonal correlation ma-
trix, whereas the alternative one is associated with a general
non-diagonal positive correlation matrix. It has been shown
that when both the sample size (V) and the observation di-
mension (M) increase without bound at the same rate, the
GLRT statistic converges in law to a Gaussian distribution,
where the asymptotic variance and mean strongly depend on
which hypothesis holds. Simulations indicate that the pro-
posed asymptotic description provides much more accurate
approximations than classical asymptotics when the sample
volume is not much larger than the observation dimension.
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