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ABSTRACT
Given their wide applicability, several sparse high-resolution
spectral estimation techniques and their implementation have
been examined in the recent literature. In this work, we fur-
ther the topic by examining a computationally efficient im-
plementation of the recent SMLA algorithms in the missing
data case. The work is an extension of our implementation
for the uniformly sampled case, and offers a notable compu-
tational gain as compared to the alternative implementations
in the missing data case.

Index Terms— Spectral estimation theory and methods,
Sparse Maximum Likelihood methods, fast algorithms.

1. INTRODUCTION

High-resolution spectral estimation algorithms find applica-
tions in a wide range of fields, and the topic have been fre-
quently examined in the recent literature. In particular a range
of non-parametric high-resolution spectral estimation algo-
rithms have been examined, as well as various ways to ef-
ficiently implement these estimators. Among the discussed
methods, the data-adaptive approaches are known to yield
a preferable performance (see, e.g., [1–4]), although these
methods will typically require large data sets to offer reliable
estimates of the second-order statistics, a requirement that is
hard to satisfy in practice. In order to alleviate this, recent
approaches often impose sparsity constraints on the estima-
tors, and methods such as the sparse learning via iterative
minimization (SLIM) method [5], the iterative adaptive ap-
proach (IAA) [6], and more recently a set of iterative sparse
maximum likelihood-based approaches (SMLA) [7,8], which
have all been shown to offer significant performance improve-
ments as compared to the traditional methods [9–12]. Regret-
tably, these methods all suffer from being computationally
cumbersome, resulting in a series of studies aiming to formu-
late computationally efficient implementations for these algo-
rithms [12–14]. In this work, we further this development,
presenting a computationally efficient implementation of the
SMLA algorithms in the missing data case, extending on our

recent contribution on how to efficiently implement the uni-
formly sampled case.

2. AN OVERVIEW OF THE SMLA APPROACH

Let {yn}N−1
n=0 ∈ C denote a uniformly sample sequence of ob-

servations affected by the additive complex circular Gaussian
white noise for which one wish to compute a power spectral
estimate. Form the data and frequency vectors

yN ,
[
y0 . . . yN−1

]T
(1)

fN (ωk) ,
[

1 eωk . . . eωk(N−1)
]T

(2)

where ωk = 2πk/K, for k = 0, . . . ,K, with K > N + 1,
and denote the power of the signal pk , |x(ωk)|2, where
x(ωk) is the complex-valued spectral amplitude at frequency
ωk. An estimate of the complex covariance matrix of yN is
then obtained as RN ,

∑K−1
k=0 pkfN (ωk)fHN (ωk)+ΣΣΣNwhere

ΣΣΣN , σIN , with σ denoting the variance of the additive noise
process.

In [7, 8], a family of four different SMLA power estima-
tion algorithms was derived, where, for the all frequencies
of interest, the SMLA power estimates are formed by itera-
tively computing the estimates pk, RN , and ΣΣΣN , until practi-
cal convergence. The resulting algorithm is computationally
cumbersome, and, in earlier work, we have strived to allevi-
ate this by proposing more efficient implementations for the
case of uniformly sampled data sets [15]. In this paper, we
extend on this work to the case of arbitrarily sampled data
sets. Consider the vector of available (or given) data and the
corresponding frequency vector

yNg
= SNgNyN , fNg

(ωk) = SNgN fN (ωk) (3)

where SNgN is aNg×N selection matrix, with zeros and ones
in proper places (see also [16]), and where Ng ≤ N denotes
the number of available data samples. Also, let SNmN be the
selection matrix corresponding to the missing data. Of the al-
gorithms presented in [7, 8], we here consider the implemen-
tation of the most involved of the there presented algorithms,



the so-called SMLA-3 estimator, noting that the others can
be implemented similarly. We term the here presented esti-
mator the missing data SMLA-3 (MSMLA-3) estimator. This
estimate may be formed

pk =
|fHNg

(ωk)R̃−1
Ng

yNg
|2

(fHNg
(ωk)R−1

Ng
fNg

(ωk))2
(4)

p̃k =
1

fHNg
(ωk)R−1

Ng
fNg

(ωk)
(5)

RNg
=

K−1∑
k=0

pkfNg
(ωk)fHNg

(ωk) + σINg
(6)

R̃Ng
=

K−1∑
k=0

p̃kfNg
(ωk)fHNg

(ωk) + σINg
(7)

σ =
‖R−1

Ng
yNg‖2

Tr[R−2
Ng

]
(8)

where (4)-(8) are iteratively computed until practically con-
vergence, with, usually, 10-15 iterations being sufficient for
convergence. Direct implementation of the MSMLA-3 es-
timate is computational intensive, requiring of the order of
CBF = m

(
3N3

g + 4N2
gK
)

operations, where m denotes the
number of the MSMLA iterations performed. Although fast
algorithms are available for the computation of the SMLA
power spectral estimates in the complete data case, these are
not directly applicable in the missing data scenario, as the
pertinent covariance matrices are no longer Toeplitz matrices.
However, as it has been reported in [12, 13], savings in the
computational burden is still possible, noting that

RNg = SNgNRNSTNgN , R̃Ng = SNgNR̃NSTNgN (9)

where

RN =
K−1∑
k=0

pkfN (ωk)fHN (ωk) + σIN (10)

R̃N =

K−1∑
k=0

p̃kfN (ωk)fHN (ωk) + σIN (11)

are Toeplitz covariance matrices, formed as in the complete
data case. The resulting scheme, discussed in [17], has a com-
plexity approximately given by O(N3

g + K log2(K)), which
is notably less than the brute force approach. However, it
may be noted that when Nm � Ng , an assumption that may
be valid in many cases of interest, the gain offered by this ap-
proach is marginal. In order to improve the performance also
for this case, we here develop a fast implementation of the
MSMLA-3 spectral estimation algorithm in the case when
Nm < Ng , by resorting to the technique recently proposed
in [18,19] in the context of missing data IAA spectral estima-
tion.

3. TECHNICAL BACKGROUND

In order to facilitate the derivation of the fast implementation,
we here examine some of the needed technical material. Con-
sider a Hermitian matrix AN ∈ CN×N and define the lower
shifting matrix

ZN =

[
0T 0

IN−1 0

]
. (12)

The displacement of AN , with respect to ZN and ZTN is de-
fined as ∇ZN ,ZT

N
AN , AN − ZNANZTN . Suppose that

there exist integers ρ and σi ∈ {−1, 1}, for i = 1, 2, . . . , ρ,
such that (see also [20–22])

∇ZN ,ZT
N

AN =

ρ∑
i=1

σit
(i)
N s

(i)H
N = TN,ρΣρS

H
N,ρ (13)

where Σρ = diag
{[
σ1 · · · σρ

]T}
and

TN,ρ =
[
t
(1)
N · · · t

(ρ)
N

]
,SN,ρ =

[
s
(1)
N · · · s

(ρ)
N

]
with diag(x) denoting the diagonal matrix formed with the
vector x along its diagonal, and with t

(i)
N and s

(i)
N being the ith

so-called generator vector. The displacement representation
allows for the development of useful results for computation
of expressions including AN .

Lemma 1 ( [20, 21] ) The Gohberg-Semencul (GS) factor-
ization of AN may be expressed as

AN =

ρ∑
i=1

σiL
(
ZN , t

(i)
N

)
LH

(
ZN , s

(i)
N

)
(14)

where L(ZN ,bN ) denotes a Krylov matrix of the form
L(ZN ,bN ) = [bN ZMbN Z2

NbN . . . ZN−1
N bN ].

Lemma 2 ( [15, 23] ) The trace of AN can be computed as

Tr [AN ] =

N−1∑
k=1

(N + 1− k)δδδN [k] (15)

where δδδN =
∑ρ
i=1 σit

i
N � si∗N with δδδN [k] denoting the k-th

element of δδδN and � the Hadamard (pointwise) product.

Lemma 1 implies that given the displacement representation
of matrix AB , matrix-vector products may be computed at
a cost of O (ρN log2(N)) operations using the Fast Fourier
Transform (FFT). Moreover, its trace Tr [AN ] can be com-
puted at a cost of O (ρN), as it is suggested by Lemma 2.

Lemma 3 The coefficients of the trigonometric polynomial
associated with AN

ψ(ω) , fHN (ω)AN fM (ω) =

N−1∑
κ=−N+1

cκe
−jκω (17)

can be estimated at a cost of O(ρN log2(2N)) using the
method detailed in [25].



Algorithm 1 Proposed implementation
1: Given pk and p̃k, for k = 0, 1, . . .K − 1, compute the

first column of RN and R̃N , using the FFT, at a cost of
O (K log 2(K)).

2: Compute the displacement representation of R−1
N and

R̃−1
N using Lemma 4, at a cost of O

(
N2
)

operations.
Compute the displacement representation of R−2

N with
an additional cost of O (N logN) operations.

3: Reconstruct R−1
N and R̃−1

N using Trench’s algorithm for
the estimation of the inverse of Toeplitz matrices [24,
p. 132], at a cost of O

(
N2
)

operations. Compute
the matrices BN and B̃N , corresponding to RN and
R̃N , as in Lemma 6. This may be done at a cost of
O
(
N3
m +NmN log(N)

)
operations using the displace-

ment representations of R−1
N and R̃−1

N .
4: Compute the numerators and the denominators of (4) and

(5) by using the decompositions (21) and (22). The first
part may be computed in O (K logK) operations [15]
and the low rank part in O (NmN log(N) +K logK)
operations [18, 19].

5: Compute Tr[R−2
Ng

] using Corollary 7. By Lemma 2,
the first term of (20) may be computed in O(N) oper-
ations. The bottleneck for the second term is the mul-
tiplication R−1

N BN which may be done at a cost of
O (NmN log(N)) operations. By noting that

BH
NBN = LHSTNmN

(
R−1
N BN

)
(16)

the final term may be computed at an additional cost of
O
(
N3
m

)
operations.

Let RN denotes a Hermetian and positive definite Toeplitz
matrix. A displacement representation of R−1

N and R−2
N may

be estimated as follows.

Lemma 4 ( [4, 20, 21] ) A displacement representation of
R−1
N with respect to ZN and ZTN and with ρ = 2, is given by

t1N = R−1
N e1

N

√
e1T
N t1N , t2N = ZN

(
JNt1N

)∗
where (·)∗ denotes the complex conjugate, with s1N = t1N ,
s2N = t2N and σ1 = 1, σ2 = −1, and where e1

N denotes a
N×1 vector with one in the first element and zeros elsewhere
and with JN denoting the exchange matrix.

Lemma 5 Given Lemma 4, a displacement representation of
R−2
N , with respect to ZN and ZTN and with displacement rank

ρ = 4, is given by

τττ1N =

[
0 0
0 R−1

N−1

]
t1N , τττ3N = ZN

[
R−1
N−1 0
0 0

]
JNt1∗N

s2N = R−1
N t1N , s4N = ZNR−1

N JNt1∗N

with s1N = t1N , s3N = t2N , τττ2N = t1N , τττ4N = t2N , and where
γ̂1 = γ̂2 = 1 and γ̂3 = γ̂4 = −1.

The displacement vectors involved in Lemma 4 can be effi-
ciently estimated using the Levinson-Durbin algorithm at a
cost of O

(
N2
)
, while those involved in Lemma 5 require

some extra O (N log 2(N)) operations.

Lemma 6 ( [18] ) Let RN > 0 and let SNgN and SNgN be
the selection matrices corresponding to the given and missing
data, respectively. Then, the following decomposition holds

STNgNR−1
Ng

SNgN = R−1
N −BNBH

N (18)

where BN = R−1
N SNmNL, with

LL∗ ,
(
SNmNR−1

N STNmN

)−1
(19)

This decomposition allows for decomposing the trace of R−2
Ng

into three parts, given by the following corollary, each of
which may be computed efficiently.

Corollary 7 Given the decomposition described by Lemma 6
it holds

Tr
[
R−2
Ng

]
= Tr

[
R−2
N

]
− 2Tr

[
R−1
N BNBH

N

]
+

Tr
[
BNBH

NBNBH
N

]
(20)

4. FAST IMPLEMENTATION

Given this, we are now ready to proceed to present the pro-
posed efficient implementation of MSMLA-3 algorithm. As
noted in [13, 14], (10) and (11) are Toeplitz matrices which
may be extracted from larger circulant matrices using the FFT,
requiring about K log2(K) operations. As a result, the GS
factorization R−1

N , R−2
N and R̃−1

N may be performed in an
efficient way. In the missing data case, the covariance matri-
ces (9) no longer have a Toeplitz structure, and the presented
GS factorization is not directly applicable. To deal with this,
denote by Ψn(ω) and Ψd(ω) the trigonometric polynomials
appearing in the numerators and the denominators of (4) and
(5), respectively, and note that these may be decomposed ac-
cording to Lemma 6 as

Ψn(ω) = fHN (ωk)STNgNR̃−1
Ng

SNgNyNg (21)

= fHN (ωk)R̃−1
N yNg

− fHN (ωk)B̃N B̃H
NyNg

and

Ψd(ω) = fHN (ωk)STNgNR−1
Ng

SNgN fN (ωk) (22)

= fHN (ωk)R−1
N fN (ωk)− fHN (ωk)BNBH

N fN (ωk)

The first term of (22) may be evaluated efficiently us-
ing the Toeplitz structure of RN using Lemma 3 and 4 in
O(N2 + N log2(N) + K log2(K)) operations, as is done
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Fig. 1. The theoretical speed up: the number of flops for
the missing data SMLA algorithm divided by the number
of flops required for inverting RNg

and R̃Ng
, for N =

(500, 1000, 2000, 4000, 8000,∞). The asymptotic speed up
(N =∞) is depicted with bold line.

in [13, 14]. The second term of (22) may be evaluated in
O(N3

m + NmN logN + N2 + K logK) operations, and
the matrix vector product that appears in the first term of
(21) is indirectly performed using the GS factorization of the
pertinent Toeplitz matrix and Lemma 6; note that this decom-
position is only beneficiary if Nm < Ng , in which case the
bottleneck which is the inversion of RNg

is replace by the
inversion of

(
SNmNR−1

N STNmN

)
. The required computations

are summarized in Algorithm 1 (see [18, 19] for further de-
tails). A detailed study of the proposed algorithm shows that
the leading terms of the computational cost are

11

6
Nm

3 + 20NmN log2N + 3N2 + 2K log(K) (23)

which should be compared to (4/3)Ng
3 + 2K log(K) which

is required by the implementation in [15]. The improvement
for N ranging from 500 to 8000 is depicted in Figure 1, for
K = 8N . It should be noted that the choice of K is irrele-
vant for the plot, since the last term of (23) is negligible for
relevant cases (K < 15N ). The complexity given in (23)
is for a single iteration. In the first term, (4/3)Nm

3 comes
from calculating L and L̃, the inverses of the Cholesky fac-
tors of SNmNR−1SNmN

T and SNmNR̃−1SNmN
T . The re-

maining (1/2)Nm
3 is from the multiplication (16). The sec-

ond term is for calculating the terms BN = R−1(STNmN
L),

B̃N = R̃−1(STmL̃), and R−1BN , which each requires 6Nm

FFT’s of size 2N , as well as for calculating the Fourier co-
efficients of fHN (ωk)BNBH

N fN (ω) from BN , which requires
2Nm FFT’s of size 2N (see [19] for details). The third term
results from the Levinson-Durbin, requiring N2 operations
(see, e.g., [4]), and the reconstruction of R−1 and R̃−1

N us-
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Fig. 2. (a-c) Complete data case for N=200. (d-f) Incomplete
data case (30% of missing data)

ing Trench’s algorithm for the estimation of the inverse of
Toeplitz matrices [24, p. 132]. The final term results from the
four FFT/IFFT calculations of size K, namely (i) R1:N,1 =

K(F−1(p))1:N , (ii) R̃1:N,1 = K(F−1(p̃))1:N , (iii) Ψn, and
(iv) Ψd.

Figure 2 illustrates the performance of the SMLA-3
method implemented using the proposed fast scheme for
the case of complete and incomplete data sets (see [10] for
further details on the experimental setup), where the power
spectral estimates using the DFT and IAA (MIAA) are also
given for reasons of comparison.

Figure 3 shows a matlab comparison of the computational
time between the proposed algorithm and the inversion of the
two matrices RNg

and R̃Ng
. As can be seen from the figure,

the speedup is considerable when the number of missing data
is much smaller than the total number of data points.
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