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ABSTRACT

A matching pursuit method using a Bayesian approach is in-

troduced for recovering a set of sparse signals with common

support from a set of their measurements. This method per-

forms Bayesian estimates of joint-sparse signals even when

the distribution of active elements is not known. It utilizes

only the a priori statistics of noise and the sparsity rate of the

signal, which are estimated without user intervention. The

method utilizes a greedy approach to determine the approxi-

mate MMSE estimate of the joint-sparse signals. Simulation

results demonstrate the superiority of the proposed estimator.

1. INTRODUCTION

The problem addressed by compressed sensing and sparse re-

covery algorithms is to recover an unknown sparse vector x ∈
C

N×1 from single measurement vector (SMV) y ∈ C
M×1

where M < N . A closely related problem is to jointly re-

cover multiple unknown sparse vectors having same support

from multiple measurement vectors (MMV). This problem

could be viewed as recovering an unknown row-sparse ma-

trix X ∈ C
N×L from an observation matrix Y ∈ C

M×L.

Some of the applications where multiple observations could

be utilized include sparse channel equalization [1], massive

MIMO [2,3], blind source separation [4], imaging of brain us-

ing magnetoencephalography (MEG) and electroencephalog-

raphy (EEG) [5], respiratory movement tracking [6] and mul-

tivariate regression [7].

Several algorithms have been proposed taking into ac-

count the case of multiple measurement vectors. Some of the

recent works include that done by Rao et al [8, 9] while oth-

ers include simultaneous OMP (S-OMP) [10], MMV-OMP

(M-OMP) and MMV-focal underdetermined system solver

(M-FOCUSS) [11] to name a few. Another algorithm called

the ReMBo algorithm [12] follows a fundamentally different

strategy. It proposes to model the MMV problem as an SMV

problem. To do so, the algorithm linearly combines the mea-

surement vectors and then solve the resulting SMV problem

using a predetermined algorithm. Another class of algorithms
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exploit the properties of the unknown sparse signals such as

correlation and structure. For example, orthogonal subspace

matching pursuit (OSMP) and subspace-augmented multiple

signal classification (SA-MUSIC) algorithms proposed by

Lee et al [13] utilize some of the inherent properties of the

unknown signals for recovery.

Most of these algorithms belong to the category of convex

relaxation algorithms which are agnostic to support distribu-

tion1 and hence demonstrate robust performance. Algorithms

considering the problem of Bayesian MMV support recov-

ery are not as common. Notable exceptions are M-SBL and

AR-SBL based on sparse Bayesian learning algorithm (SBL).

These algorithms assume Gaussian prior over the non-zero

elements of the unknown sparse signals.

The focus of the present paper is on developing a Bayesian

approach for sparse signal recovery using multiple observa-

tions. Specifically, we pursue a Bayesian approach similar to

that proposed in [14, 15] that combines the advantages of the

two approaches summarized above. On the one hand, the ap-

proach is Bayesian, acknowledging the noise statistics and the

signal sparsity rate, while on the other hand, the approach is

agnostic to the signal support statistics (making it especially

useful when these statistics are unknown or non-Gaussian).

Specifically, our approach provides the following advantages:

(i) it provides Bayesian estimates of the sparse signals even

when the signal support prior is non-Gaussian or unknown.

(ii) it is agnostic to the support distribution and so the pa-

rameters of this distribution whether Gaussian or not, need

not be estimated. This is particularly useful when the signal

support priors are not i.i.d. (iii) it features the capability of

sensing supports by different sensing matrices which unlike

other contemporary algorithms allows us to capture the signal

information in a much better manner. (iv) it utilizes the prior

Gaussian statistics of the additive noise and the sparsity rate

of the signals and is able to estimate these in a robust man-

ner from the data. (v) it enjoys low complexity thanks to its

greedy approach and the order-recursive update of its metrics.

1In the paper we use the term support distribution to refer to the distribu-

tion of the active elements of the unknown signal x.



2. BAYESIAN SETUP FOR SUPPORT AGNOSTIC
JOINTLY SPARSE SIGNAL RECONSTRUCTION

In this paper we will consider the estimation of a row-sparse

matrix, X ∈ C
N×L, from multiple observation vectors repre-

sented as a matrix Y ∈ C
M×L, obeying the linear regression,

Y = ΦX+W. (1)

Here Φ ∈ C
M×N is a known regression/sensing matrix2 and

W is a matrix representing a collection of additive white

Gaussian noise vectors following CN (0, σ2
wIM ). To as-

sist in algorithm development in the following, we will

represent the matrices X,Y and W as collection of col-

umn vectors X = [x1 x2 . . . xL], Y = [y1 y2 . . . yL] and

W = [w1 w2 . . . wL] respectively, wherever needed. The

formulation is valid for L = 1 (SMV) as well as L > 1
(MMV) case. We shall assume that each unknown sparse

vector xi is modeled as xi = xAi
◦ xB where xAi

and xAj

are independent and ◦ indicates element-by-element multipli-

cation. The vector xAi
models the support distribution and

consists of elements that are drawn from some unknown dis-

tribution3 and xB is a binary vector whose entries are drawn

i.i.d. from a Bernoulli distribution with success probability λ.

The sparsity of vectors xi’s is controlled by λ and, therefore,

we call it the sparsity rate.

We pursue an MMSE estimate of X given Y as follows

X̂mmse � E[X|Y] =
∑
S

p(S|Y)E[X|Y,S], (2)

where the sum is executed over all possible 2N support sets.

Given the support S , (1) becomes, Y = ΦSXS +W, where

ΦS is a matrix formed by selecting columns of Φ indexed by

support S . On the contrary, XS is formed by selecting rows

of X indexed by S . Let us see how the sum (2) can be eval-

uated. Since the distribution of the support of X is unknown

or possibly non-Gaussian, computation of E[X|Y,S] in (2)

is difficult or even impossible. Thus the best we could do is

to replace it with the best linear unbiased estimator (BLUE)4

E[X|Y,S] ← (ΦH
SΦS)−1ΦH

SY. (3)

Now, the posterior in (2) can be written using Bayes rule as

p(S|Y) = p(Y|S)p(S)/p(Y) (4)

The factor p(Y) is a normalizing factor common to all pos-

teriors and hence can be ignored. Since the elements in each

2Our algorithm is capable of modeling the scenario where multiple sens-

ing matrices could be used to sense the unknown sparse vectors. However, in

this paper we focus on the case where sensing matrices are same.
3The distribution may be unknown or known with unknown parameters

or even Gaussian. Our developments are agnostic to the statistics of xAi
.

4This is essentially minimum-variance unbiased estimator (MVUE). The

linear MMSE would have been a more faithful approach of the MMSE but

that would depend on the second-order statistics of the support, defying our

support agnostic approach.

vector xi are activated according to a Bernoulli distribution

with success probability λ, we have

p(S) = λ|S|(1− λ)N−|S|. (5)

To evaluate the likelihood p(Y|S), we represent it in terms

of individual vectors i.e., p(Y|S) = p(y1,y2, . . . ,yL|S) and

noting that these vectors given the support S are independent,

we have p(Y|S) = p(y1|S)p(y2|S) . . . p(yL|S). If XS is

Gaussian, p(Y|S) would also be Gaussian and that is easy

to evaluate. On the other hand, when the distribution of X
is unknown or even when it is known but non-Gaussian, de-

termining p(Y|S) is in general very difficult. To go around

this, we note that each measurement vector yi is formed by a

vector in the subspace spanned by the columns of ΦS plus a

Gaussian noise vector, wi. This motivates us to eliminate the

non-Gaussian component by projecting yi onto the orthogo-

nal complement space of ΦS . To do so we multiply yi by the

projection matrix P⊥
S = I−PS = I−ΦS

(
ΦH

SΦS
)−1

ΦH
S .

This leaves us with P⊥
S yi = P⊥

Swi, which is zero mean

Gaussian with covariance

K = E[(P⊥
Swi)(P

⊥
Swi)

H] = P⊥
S σ

2
wP⊥

S
H
= σ2

wP⊥
S . (6)

where σ2
w is the noise variance. Thus we can write,

p(yi|S) � 1√
(2πσ2

w)M
exp

(
−1

2

(
P⊥

S yi

)H
K−1

(
P⊥

S yi

))
.

(7)

Simplifying and dropping the pre-exponential factor yields,

p(Y|S) � exp

(
− 1

2σ2
w

L∑
i=1

∥∥P⊥
S yi

∥∥2

)
. (8)

While we now have all the ingredients to evaluate the sum

in (2) this remains a challenging task when N is large as we

have to evaluate the sum over 2N terms. To go around this,

we approximate the sum by evaluating over a few support sets

corresponding to significant posteriors, yielding,

X̂ammse =
∑
S∈Sd

p(S|Y)E[X|Y,S]. (9)

where Sd is the set of supports corresponding to significant

posteriors. In the next section, we propose a greedy algorithm

to find Sd. For convenience, we represent the posteriors in the

log domain and define a dominant support selection metric

ν(S), to be used by the greedy algorithm, as

ν(S) � ln p(Y|S)p(S)

= ln exp(
−1

2σ2
w

L∑
i=1

∥∥P⊥
S yi

∥∥2
) + ln(λ|S|(1− λ)N−|S|)

=
1

2σ2
w

L∑
i=1

[∥∥∥ΦS(ΦH
SΦS)−1ΦH

Syi

∥∥∥2

− ‖yi‖2
]

+ |S| lnλ+ (N − |S|) ln(1− λ) (10)



3. THE GREEDY ALGORITHM M-SABMP

We now present a greedy algorithm to determine the set of

dominant supports, Sd, required to evaluate X̂ammse in (9).

We search for the optimal support in a greedy manner. We

first start by finding the best support of size 1, which involves

evaluating ν(S) for S = {1}, . . . , {N}, i.e., a total of
(
N
1

)
search points. Let S1 = {i�1} be the optimal support. Now,

we look for the optimal support of size 2. Ideally, this involves

a search over a space of size
(
N
2

)
. To reduce the search space,

however, we pursue a greedy approach and look for the point

i�2 �= i�1 such that S2 = {i�1, i�2} maximizes ν(S2). This in-

volves
(
N−1
1

)
search points (as opposed to the optimal search

over
(
N
2

)
points). We continue in this manner by forming

S3 = {i�1, i�2, i�3} and searching for i�3 in the remaining N − 2
points and so on until we reach SP = {i�1, . . . , i�P }. The value

of P is selected to be slightly larger than the expected num-

ber of nonzero elements in each of the constructed signal such

that Pr(|S| > P ) is sufficiently small5.

Note that in our greedy move from Sj to Sj+1, we need

to evaluate ν(Sj ∪ {ij+1}) around N times, which can be

done in an order-recursive manner starting from that of ν(Sj).
Specifically, we note that every expansion, Sj ∪ {ij+1}, from

Sj requires a calculation of ν(Sj ∪ {ij+1}) using (10). This

translates to appending a column φj+1 to ΦSj
in the calcula-

tions of (10), which can be done in an order-recursive manner.

We summarize these calculations in Section 4.

The nature of our greedy algorithm allows us to output

not just the set of dominant supports but also the ingredients

needed to compute Xammse in (9) without any additional cost.

Specifically, since ν(S) is simply ln p(S|Y), we do not need

to compute the posteriors separately. Similarly, the form of

E[X|Y,S] in (3) lends itself as an intermediate computation

performed to calculate ν(S). A formal algorithmic descrip-

tion of our greedy algorithm is presented in Table 1.

3.1. Refined Greedy Search

One of the advantages of the proposed greedy algorithm is

that it is agnostic to the support distribution; the only parame-

ters required are the noise variance, σ2
w, and the sparsity rate,

λ. However, M-SABMP does not require the user to provide

any initial estimate of λ and σ2
w. Instead the method starts by

finding initial estimates of these parameters which are used

to compute ν(S) in (10). Refining these parameters will im-

prove our chances of selecting the right support. The refine-

ment demands that the greedy algorithm be repeated with new

estimates. In this way both the hyperparameters and support

are refined simultaneously. The repetition continues until a

5|S|, i.e., support of the constructed signal, follows the binomial dis-

tribution B(N, p), which can be approximated by the Gaussian distribu-

tion N (Np,Np(1 − p)) if Np > 5. For this case, Pr(|S| > P ) =
1
2

erfc P−Np√
2Np(1−p)

.

1: procedure GREEDY(Φ,Y, λ, σ2
w, P )

2: initialize T ← {1, 2, . . . , N}, i ← 1
3: initialize empty Smax, Sd, p(Sd|Y), E[X|Y,Sd]
4: Ti ← T
5: while i ≤ P do
6: Ω ← {Smax ∪ {α1},Smax ∪ {α2}, · · · ,Smax ∪ {α|Li|} |

αk ∈ Ti}
7: compute {ν(Sk) | Sk ∈ Ω}
8: find S� ∈ Ω such that ν(S�) ≥ maxj ν(Sj)
9: Sd ← {Sd,S�}

10: compute p(S�|Y),E[X|Y,S�]
11: p(Sd|Y) ← {p(Sd|Y), p(S�|Y)}
12: E[X|Y,Sd] ← {E[X|Y,Sd],E[X|Y,S�}
13: Smax ← S�, Ti+1 ← T \ S�, i ← i+ 1
14: end while
15: return Sd, p(Sd|Y),E[X|Y,Sd]
16: end procedure

Table 1: The Greedy Algorithm

predetermined criterion has been satisfied. A description of

the M-SABMP algorithm is provided in Table 2.

3.2. Estimation & Refinement of λ and σ2
w

When the hyperparameters λ and σ2
w are unknown, we need

to refine them iteratively. This starts from some initial esti-

mate usually supplied by the user. Here, we show how we

can initialize the process from the observed data. Project-

ing a measurement vector yj onto the basis vectors φi, i =
1, · · · , N (columns of Φ) provides one way to initialize λ as

follows:

i� = argmax
i∈[1,··· ,N ]

∣∣∣φH
i yj

∣∣∣ ,
ρ�i =

{
0, if

∣∣∣φH
i yj

∣∣∣ < ∣∣∣φH
i�yj

∣∣∣ /2
1, otherwise

,

λ init =

N∑
i=1

ρ�i /N. (11)

Our algorithm is robust enough to find the right support even

if λ is initialized badly. Note that the projections performed

above are required by the first step of the greedy algorithm

and, therefore, do not require any additional computation. As

for the noise variance, our experimental results show that us-

ing an initial estimate as rough as σ2
w init = 1

4σ
2
Y is good

enough (σ2
Y is the variance of the elements of Y collectively)

and the algorithm performs quite well in estimating the actual

noise variance. We now explain how a fairly accurate estima-

tion could be performed in a very simple manner as follows.

Recall that, our greedy algorithm returns a set of domi-

nant supports Sd along with the corresponding p(S|Y) and

E[X|Y,S]. These are used to compute X̂ammse from (9).

Similarly, by determining Ŝmap = argmaxS∈Sd p(S|Y) we

are able to determine x̂map = E[X|Y, Ŝmap]. Based on these



1: procedure M-SABMP(Φ,Y, rstop)

2: estimate λ, and σ2
w.

3: repeat
4: P ← Nλ+ ε
5: λold ← λ
6: {Sd, p(Sd|Y),E[X|Y,Sd]}← G(Φ,Y, λ, σ2

w, P )

7: Ŝmap ← arg maxSp(S|Y)
8: x̂map ← E[X|Y, Ŝmap]
9: x̂ammse ← ∑

S∈Sd p(S|Y)E[X|Y,S]
10: λ ← ‖x̂map‖0 /LN
11: σ2

w ← var(Y −ΦX̂ammse)
12: until |λ− λold|/λold < rstop

13: return X̂ammse

14: end procedure

Table 2: M-SABMP

quantities we update λ and σ2
w as follows:

λ̂ =
∥∥∥X̂map

∥∥∥
0
/LN, σ̂2

w = var(Y −ΦX̂ammse) (12)

The greedy algorithm is called again with this new set of pa-

rameters. The output of which is then used to update λ and

σ2
w again using (12). This process continues until a prespec-

ified criteria has been satisfied. Simulation results show that

both λ̂ and σ̂2
w converge to fairly accurate values.

We would also highlight that the nature of our algorithm

allows us to penalize sparsity. Unlike normal matching pur-

suit algorithms, our algorithm could select supports of vary-

ing sizes based on ν(S) and thus is able to penalize sparsity.

For a detailed description of the steps followed by the method

the algorithms are provided in Tables 1 and 2.

4. EFFICIENT COMPUTATION OF ν(S)

By inspection of ν(S) in (10), we see that the main challenge

is in calculating the term ‖(ΦS(ΦH
SΦS)−1ΦH

Syi)‖2 which

can be written in terms of the expectation as ‖ΦSE[xi|yi,S]‖2.

So, we mainly need to update E[xi|yi,S]. To this end,

consider the general support S = {s1, s2, s3, . . . , sk} with

s1 < s2 < · · · < sk and let S and S denote the subset S =
{s1, s2, s3, . . . , sk−1} and superset S = {s1, s2, s3, . . . , sk+1},

respectively, where sk < sk+1. In the following, we demon-

strate how to update ey,k−1(S) � E[xi|yi,S] to obtain6

ey,k(S) = E[xi|yi,S]. Note that since S = S ∪ {sk}, we

can write

ey,k(S) =
⎛
⎝
⎡
⎣ΦH

S

φH
sk

⎤
⎦ [

ΦSφsk

]⎞⎠
−1 ⎡

⎣ΦH
Sy

φH
sk
y

⎤
⎦ . (13)

Note that we have dropped the subscript i for simplicity. By

using the block inversion formula to express the inverse of the

above and simplifying, we get

6We explicitly indicate the size k of S in this notation as it elucidates the

recursive nature of the developed algorithms.

ey,k(S) =
⎡
⎣ Γeφ,k(S) + ey,k−1(S)

−Γ

⎤
⎦ (14)

where Γ = 1
fS

(qH
φ,k(S)ey,k−1(S) − ey,1(sk)). This re-

cursion is initialized by ey,1(i) = (φH
sφs)

−1φH
s y. The

recursion also depends on qφ,k(S) � ΦH
Sφsk

, eφ,k(S) �
(ΦH

SΦS)−1ΦH
Sφsk

and fS � 1 − qH
φ,k(S)eφ,k(S). The

recursions for eφ,k(S), and qφ,k(S) may be determined as

follows7

eφ,k+1(S) =
⎡
⎣ Λeφ,k(S) + eφ,k(S; sk+1)

−Λ

⎤
⎦ (15)

where Λ = 1
fS

(qH
φ,k(S)eφ,k(S; sk+1)− eφ,2(sk; sk+1)),

qφ,k+1(S) =
[
ΦH

S
φH

sk

]
φsk+1

=

[
qφ,k(S; sk+1)
qφ,2(sk; sk+1)

]
(16)

The two recursions (15) and (16) start at k = 2 and are

thus initialized by eφ,2(s1; s2) and qφ,2(s1; s2) for s1, s2 =
1, 2, . . . , N . This completes the recursion of ey,k(S) which

we utilize for recursive evaluation of ν(S).

5. SIMULATION RESULTS

To demonstrate the performance of the proposed M-SABMP

algorithm, we performed two experiments. In all of the ex-

periments we chose N = 128, and M = 64. Experiments

were conducted for signals whose active elements are drawn

from Gaussian as well as non-Gaussian distributions. En-

tries of M × N sensing/measurement matrix Φ were i.i.d.,

with zero means and complex Gaussian distribution where

the columns were normalized to the unit norm. The noise

had a zero mean and was white and Gaussian with variance

σ2
w which was determined according to the desired SNR. Fi-

nally, we used two different metrics for performance mea-

sure; the normalized mean-squared error (NMSE) between

the original X, and its MMSE estimate, X̂ammse defined by

10 log10(‖X̂k−Xk‖2/ ‖Xk‖2), and the success rate. Success

rate is defined as the ratio of the number of successful trials

to the number of total trials, where a trial is successful when

the condition NMSE ≤ −10 dB was satisfied. The number

of trials performed for computing both NMSE and success

rate was 200. We compared the performance of our algorithm

with M-FOCUSS [11] and M-BP [16] where default settings

as proposed by their authors were used.

In the first experiment, success rate was computed for dif-

ferent sparsity levels. Simulations were performed for L =
3, 5, and 7 while SNR was 25dB. It is obvious from Fig. 1

7Notation such as eφ,k(S; sk+1) is a short hand for eφ,k(S∪{sk+1}).



that M-SABMP outperforms both algorithms; especially it

performs well for higher values of the sparsity rate and is able

to detect the unknown support with high accuracy.

In Fig. 2, error performance of the MMV algorithms is

compared for various values of SNR and λ = 0.2. Observe

that M-SABMP outperforms other algorithms for all values

of SNR. Additionally, Fig. 3 shows that in most of the cases

our algorithm requires the least amount of time which is due

to its recursive nature.

Fig. 1: Signal recovery success rate
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6. CONCLUSION

A robust Bayesian matching pursuit algorithm based on a fast

recursive method for joint-sparse signal recovery is presented.

It does not require the active elements in signals to be derived

from some known distribution. This is useful when we can-

not estimate the parameters of the signal distributions. The

algorithm does not require the initial estimates of signal spar-

sity and noise variance and is able to boot strap itself. We

demonstrated that the algorithm is robust and performs well

as compared to other algorithms.
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