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ABSTRACT 

 

EEG-fMRI research to study brain function became popular 

because of the complementarity of the modalities. Through 
the use of data-driven approaches such as jointICA, sources 

extracted from EEG can be linked to regions in fMRI. Joint-

ICA in its standard formulation however does not allow for 

the inclusion of multiple EEG electrodes, so it is a rather 

arbitrary choice which electrode is used in the analysis. In 

this study, we explore several ways to include the higher 

dimensionality of the EEG during a joint decomposition of 

EEG and fMRI. Our results show that incorporation of mul-

tiple channels in the jointICA can reveal new relations be-

tween fMRI activation maps and ERP features.  

 
Index Terms— Multimodal, EEG-fMRI, joint decom-

position, jointICA 

 

 

1. INTRODUCTION 

 

Several technologies exist that can help to shed light on 

brain functioning. As data from one modality gives only a 

limited view on the phenomenon under investigation, there 

is a rising interest in methods that are able to combine data 

from different brain imaging modalities.  In particular, two 

highly complementary modalities to study the brain are EEG 
and fMRI. There is a wide range of integration methods, but 

the family of data-driven decomposition techniques is of 

particular interest as they are able to extract sources from 

EEG and fMRI that are uniquely linked.   

 

JointICA estimates independent components for both mo-

dalities simultaneously by assuming that different Event-

Related Potential (ERP) peaks and spatial fMRI activation 

maps of the same stimulus co-vary, which could be physio-

logically explained by either that they are generated in the 

same brain region [3], or that the fMRI BOLD-signal has a 
participatory role on the ERP-activity [1]. As a result, join-

tICA provides linked sources in a data-driven fashion. Join-

tICA was for the first time applied to fuse EEG-fMRI data 

in [2]. Later, the physiological validity of this technique was 

thoroughly tested in [6]. However, in its current implemen-

tation, it takes only one-dimensional data per subject as 
input, where EEG data is intrinsically higher dimensional. 

Traditionally, this one-dimensionality is achieved by select-

ing one electrode per subject ―based on prior knowledge‖.  

As this can be often a rather arbitrary choice, we explore in 

this paper several possibilities of incorporating multiple 

dimensions in such a joint simultaneous decomposition of 

EEG and fMRI.  

 

2. MATERIALS 

 

2.1. Data acquisition 

 

All experiments were performed on non-simultaneously 

acquired EEG-fMRI data recorded during a visual detection 

task. In order to be able to compare results in an objective 

way, we reuse the data from a jointICA study described in 

[6]. 18 subjects were subjected to a series of visual stimuli 

in the different quadrants of the visual field, and asked to 

press a button upon detection.  First, fMRI was acquired 

during the tasks. Second, the experiment was repeated for 

EEG recording in a magnetic-field free environment. The 

data adopted only consisted to that corresponding to the 

visual stimuli in the down-left visual field quadrant. For 
details on data acquisition, we refer to [6,7]. 

 

2.2. Preprocessing 

 

Preprocessing of the EEG was done in the MATLAB envi-

ronment. To make sure both modalities have equal impact 

on the decomposition, the EEG data were upsampled using 

cubic spline interpolation.  Preprocessing of the fMRI was 

done using the SPM software (Wellcome Trust Centre for 

Neuroimaging). The fMRI data were slice—time corrected, 

realigned, coregistered with anatomical images, normalized 
to the MNI template and smoothed with 8-mm Gaussian 

Kernel. Percent Signal Change (PSC) maps were derived 



from contrasting the BOLD signal invoked by a particular 

stimulus with the background.  

 

3. METHODS 

 

In this study, we aim to incorporate multiple channel dimen-
sions in a joint decomposition of EEG and fMRI. We start 

from the original jointICA method, and modify its original 

formulation in order to incorporate information of multiple 

EEG channels.  

 

The original jointICA model can be written as 

 

 [         ]    [         ] (1) 

 

Here,   corresponds to the observed signals,   denotes the 

sources, and   is the mixing matrix to be calculated. In this 

case, when one EEG channel is used as input,      is a 

    matrix, in which every row corresponds to the aver-

aged ERP for one subject. The number of subjects thus 

equals   and the number of time samples equals  .        
is an     matrix, where every row corresponds to a vector 

containing all the voxels of a PSC fMRI map,   being the 

number of voxels.  

 

The method works based on the assumption that the electri-

cal effects of brain activation (ERP activity) and the hemo-

dynamic response to this brain activation (BOLD response) 

are generated by the same neuronal activity. This means that 

stronger ERP peaks lead to stronger BOLD response. If this 

hypothesis is valid, the mixing matrix can be assumed to be 

common for EEG and fMRI, and this mixing matrix will 

reflect the relative strengths of the different peaks across 
subjects. Applying ICA to a matrix of concatenated PSC 

fMRI maps and averaged ERP signals will result in the 

extraction of components that link ERP peaks to activated 

regions in fMRI.  

To compute ICA the Infomax algorithm by Bell and 

Sejnowski (1995), contained in the Fusion ICA Toolbox 

(FIT, Calhoun et al) was used. Since the number of extract-

ed components needs to be determined in advance, first the 

robustness analysis tool ICASSO (Himberg and Hyvärinen) 

was used to determine the optimal numbers of components 

giving rise to stable solutions. The results of jointICA are 
presented based on 2 different EEG channels, namely PO8, 

and Oz, for which the results were previously shown in [6]. 

To be able to objectively compare the obtained fMRI maps, 

the fMRI sources are also normalized by subtracting the 

mean and dividing by the standard deviation. 

 

One way to incorporate multiple channels and thus spatio-

temporal ERP information is to concatenate multiple chan-

nels into the jointICA. This can be written as follows: 

 

 [                      ]  
  [                      ] (2) 

 

In this application of jointICA, the assumptions for which 

this model is valid remain the same. It implies that distinct 

ERP activity and fMRI maps are linked by their participa-

tory role in certain brain activations. The results provide 
extracted sources that contain fMRI maps and –in this situa-

tion- an ERP peak as reflected on different electrodes. Since 

the results can be compared to the single-channel cases for 

electrodes PO8 and Oz, (2) is solved for electrode combina-

tions including at least one of the original channels. 

 

A second approach to incorporate multiple channels is 

through concatenation of the ERP data in the subject dimen-

sion. The fMRI data is also replicated in the subject dimen-

sion so that the problem comes down to solving 

 

   [

          

          

  
          

]    [         ] (3) 

 

This particular problem statement can be understood in 

analogy with (1). The signal matrix   now contains a num-

ber of signals that are equal to                  . Seen 

from the original jointICA perspective, this corresponds to 

the situation of observing one channel, from a much larger 

number of subjects. ICA will decompose this variance-rich 

virtual channel using a large number of linked sources. The 

ERP peaks in these virtual sources can be regarded as origi-
nating from either one of the incorporated channels or from 

any combination of these channels.  

For sake of simplicity, we refer to the jointICA with multi-

ple time concatenated ERPs as tJointICA (2), and to the 

JointICA with subject concatenated ERPs as sJointICA (3). 

 

 

4. RESULTS 

 

As mentioned, first jointICA was applied to the EEG-fMRI 

data using the ERP data from one channel only to reproduce 
the results from [6], as they are considered the reference 

decomposition. Figure 2 shows one selected IC of the joint-

ICA results for the ERP data from electrode PO8 and corre-

sponding fMRI data. In total 18 joint components were 

extracted, since ICASSO showed that this would result in 

stable components.  



Figure 2a and 2b both show the same joint component cor-

responding to the late N1 ERP wave, with each figure high-

lighting the activations in a different brain area. Figure 2a 

shows that the late N1 peak involves activations in the so-

matosensory and primary motor areas (Brodmann Area 
(BA) 1, 2, 3 and 4), in the supplementary motor areas (BA 

6), and in the insula (BA 13). In Figure 2b the visual activa-

tions are shown, for example those in the right middle oc-

cipital gyrus (BA 19). When these activation maps dis-

cussed were compared with existing literature, it was indeed 

verified that the linking of these ERP and BOLD signals in 

the jointICA components do have a physiological resonance. 

To ease our further analysis, let us focus on these areas and 

call them our regions of interest (ROI’s). 

 

Figure 3 presents the first component of the decomposition 
when multiple ERP channels are incorporated in tJointICA. 

More specifically, we look at the case for 2, 3 and 5 elec-

trodes, comprising of channels Oz and PO8 for the first, 

PO7, Oz and PO8 for the second and PO7, O1, Oz, O2 and 

PO8 for the third case. We call these different analyses 

2tJointICA, 3tJointICA and 5tJointICA. In all scenarios, 

ICASSO advised 18 components.  

Figure 3 shows the component, corresponding to the late N1 

peak at electrode PO8, just as in the single electrode case. 

When comparing Figure 3a with the results from only one 

electrode in Figure 2a, we see that adding electrode Oz 

through concatenation in time results in highly similar fMRI 
maps. The ERP IC shows that these activation maps corre-

spond to strong N1 activity at PO8 while the source is not 

active at Oz.  

When looking at Figure 3b, we see that by adding also elec-

trode PO7, some regions of interest are largely emphasized 

w.r.t. the single channel case. Primary and supplementary 

motor areas, somatosensory areas, and insula greatly light 

up.  

Finally, for the 5tJointICA, in the first joint component as 

shown in Figure 3c, we see the same clear activation maps 

as in Figure 3b, only now with the activity in the thalamic 

region almost gone. The ERP IC gradually shows more N1 

activity closer to electrode PO8, which captures the correct 

lateralization of brain activity due to the stimulus in the 

down-left visual field quadrant. 
A similar effect can be observed at other extracted compo-

nents as well (not shown), i.e. the activation maps contain 

larger, more robust clusters.  

 

The second method of incorporating multiple channels was 

to concatenate channels in the subject dimension. We inves-

 

 

 

Fig. 3.  JointICA results after concatenation of multiple channels in 
time dimension. Every time the first IC is shown. The blue plot 

shows the grand average ERP, the white shows the ERP IC. a) For 

channels Oz and PO8. b) PO7, Oz and PO8. c) PO7, O1, Oz, O2, 
and PO8. For all fMRI maps the same visualization threshold was 

used. 

 

 
 

Fig. 2.  One selected IC from jointICA results for channel PO8. 
The blue plot shows the grand average ERP for this channel, the 

white plot shows the ERP IC. fMRI IC activation maps are shown 
in red. a)  Late N1 peak, showing the activations in motor and 

somatosensory areas. b) Same IC as in a), now showing the activa-
tions in visual areas. For all fMRI maps the same visualization 

threshold was used. 

 



tigate this by performing calculations for 2,  (two sets of) 3 

and 5 electrodes: including electrodes O2 and PO8 in the 

first case, Oz, O2 and PO8 in the second, PO7, Oz and PO8 

in the third, and PO7, O1, Oz, O2 and PO8 in the fourth 

case, and referred to as 2s-, 3s-, and 5sJointICA. In these 

cases, ICASSO pointed out that the number of components 

should equal                      , which we com-

plied to. 

 

Figure 4 shows the extracted joint components for every 

case in this analysis, corresponding to a N1 peak. When 

comparing Figure 4a with the single-electrode case in Figure 

2a, it can be seen that adding channel O2 in the subject 

dimension results in an ERP peak that is more compressed 

in time, and maybe slightly larger fMRI maps. When adding 

the channel Oz (Fig 4b), the result is an even more com-
pressed ERP peak. The regions of interest are also clearly 

better visible. When choosing a different set of channels 

(PO7, Oz and PO8) which are wider apart, the fMRI areas 

change significantly to more compact areas, while the ERP 

IC stays approximately the same. Incorporating all five 

channels together gives a narrow ERP peak, which does not 

correspond to meaningful fMRI activity anymore.  

 

When investigating other components extracted  with sJoint-

ICA we see that for example the N1 peak of the single-

channel case is subdivided in many different, narrower 

peaks. When looking at the activation maps, we see that the 
2sJointICA in general gives better visualization of the re-

gions of interest than the regular jointICA, and this is valid 

for all ERP components discussed in Figure 2. In some 

components captured by 3sJointICA excellent activation 

maps were obtained for these ROI’s, while showing little 

other activations. However, in the 5sJointICA the ROI’s 

could not even be identified, as lots of unknown activations 

were visible.  

 

5. DISCUSSION 

 
Although [6,7] showed that physiologically plausible de-

compositions can be obtained with single-channel jointICA 

this study shows the original jointICA can only tell one side 

of the story. The strength of jointICA is that components 

can be extracted that link activation in EEG to activation in 

fMRI, allowing to draw conclusions about where and when 

activity in the brain is processed. However, prior knowledge 

is always needed to select a channel of interest from the 

EEG and it is not excluded that spurious activations in fMRI 

become visible that has to be discarded by the same prior 

knowledge.  As can be seen from Figures 3 and 4, incorpo-

rating multiple channel ERP data allows us to extract com-
ponents which concentrate on certain other characteristics of 

the data under study, producing probably more robust re-

sults.  

 

Figure 3 shows that the regions of interest obtained with 

tJointICA are in general larger compared with the results of 

the original jointCA. This could mean that this technique 
has a preference to show fMRI activations with a stronger 

physiological connection to the ERP peaks. However, by 

increasing the robustness, it has still to be determined that 

the method keeps its sensitivity to extract components relat-

ed to small peaks like the P1. 

The sJointICA results show that incorporating multiple 

channels in this way also allows putting the data in a differ-

ent perspective. As explained above, sJointICA treats the 

channels incorporated as if they are originating from a 

common virtual channel. This arrangement of the data al-

lows the extraction of a larger number of components. As 
shown by Figure 4, these components describe ERP charac-

teristics that are very narrow in time. In this sense, the sJoin-

tICA sacrifices multiple channel information to obtain com-

ponents with a finer time resolution. Figure 4a and 4c show 

us that this technique can result in components that allow 

certain fMRI areas of interest to be more clearly visualized, 

but that the choice of channel set also greatly influences 

which other areas light up or disappear.  

Without having shown other components, we noticed during 

exploration that the sJointICA extracts many narrow IC’s, 

which allow the study of the evolution of fMRI activations 

in nearly every time point present in the ERP. For example, 

 

 

Fig. 4.  JointICA results after concatenation of multiple channels in 

subject dimension. Every time the first IC is shown. The blue plot 
shows the grand average ERP, the white one shows the ERP IC. a) 

For channels O2 and PO8. b) Oz, O2 and PO8 c) PO7, Oz and PO8. 
d) PO7, O1, Oz, O2, and PO8. For all fMRI maps the same visualiza-

tion threshold was used. 

 



components corresponding to the early and small P1 were 

clearly visible for all three sJointICA decompositions dis-

cussed, and the fMRI maps were definitely physiologically 

relevant.  

 

We clearly illustrate that incorporating multiple channels in 
the jointICA can lead to unraveling EEG-fMRI data with 

high spatio-temporal resolution. Several remarks are still in 

place. The first relates to the way we arranged the data.  

Always, higher dimensional data was compressed into a 

matrix, being subsequently decomposed.  Recently, coupled 

matrix-tensor decompositions were proposed that potentially 

allow extracting components from the higher-dimensional 

EEG data in its original 3D representation and linking these 

to sources extracted from the fMRI.  We explored such an 

approach, by decomposing the data with Coupled Matrix-

Tensor Factorization (CMTF) [4,5].  However, up to now on 
our data, no convincing results were obtained although the 

underlying model is valid.   

A second remark relates to the exploratory and illustrative 

nature of this study. For both tJointICA and sJointICA the 

choice of channels influenced the results in a major way. As 

the ultimate goal of a multimodal integration method is to 

derive new insights from new data, these influences should 

be further investigated for both approaches so that the meth-

ods can be used for exploratory purposes rather than post 

hoc validation studies. Further research is needed to develop 

a fully objective way of handling the different perspectives 

obtained with the different decompositions, and it needs to 
be further validated to what degree all components reveal 

physiological connections that could be of some diagnostic 

or functional value. Although we focused here on some 

regions of interest, this is a rather narrow approach, and it 

could even be that the most valuable information for physio-

logical interpretability lies in the other activation areas, 

which varied among the different techniques and channel 

sets. Future research will certainly be conducted in an ap-

proach that is sensitive to new interpretations of these novel 

components.   

 

6. CONCLUSION 

 

In this paper we have explored the fusion of multiple chan-

nel ERP data and fMRI data. Different channels were con-

catenated in different ways into the classical jointICA for-

mulation, and the extracted sources were analysed in terms 

of physiological plausibility.  It was clearly shown that in 

many situations the extracted source activations showed 

more robust patterns than in the original jointICA.  Howev-

er, the large variability in the components extracted from 

different models needs further investigation.  
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