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Abstract—In this paper, we present a reduced complexity iter-

ative grid-search technique for locating non-cooperating primary

emitters in cognitive radio networks using received signal strength

(RSS) measurements. The technique is based on dividing the

search space into a smaller number of candidate subregions,

selecting the best candidate that minimizes a cost function and re-

peating the process iteratively over the selections. We evaluate the

performance of the proposed algorithm in independent shadowing

scenarios and show that the performance closely approaches to

that of the full search, particularly at small shadowing spread

values with significantly reduced computational complexity. We

also look at the performance of our algorithm when the initial

search space is specified based on two different data-aided

approaches using sensor measurements. Our simulation results

show that the data-aided initialization schemes do not provide

performance improvement over blind initialization.

I. INTRODUCTION

Flexible radio technologies that enable opportunistic access
to unused spectrum have been a focal point of recent research
in addressing spectrum shortage problem. Opportunistic radio
systems are expected to adhere to spectrum regulations in
the region they are deployed and they should avoid harmful
interference to primary spectrum holders in their exclusive
region. Primary exclusive region is the area within which
opportunistic users are not allowed to transmit [1]. Predicting
primary exclusive region of a primary emitter requires the
knowledge of primary emitter’s location and its transmit power,
which in most cases are not readily available due to non-
cooperative nature of primary networks.

Emitter localization problem in general has been consid-
ered extensively in the literature; see for example [2] for
an overview of localization techniques. Localization may be
accomplished via many techniques, such as received signal
strength (RSS), time of arrival (TOA), time difference of
arrival (TDOA) and angle of arrival (AOA). Although TOA
and TDOA are generally more accurate, RSS based techniques
are often of interest as they require simpler hardware. The
challenge of RSS based localization is due to numerous factors
affecting the energy decay between the transmitter and emitter
such as shadowing, multipath, path loss exponent estimation
errors, geometric configuration of the nodes and antenna
orientation. Despite having several sources of error, RSS based
techniques are expected to perform satisfactorily when a large
number of spatially separated sensors are employed.

The literature on RSS based emitter localization has been
on developing efficient algorithms for accurate location es-
timation. Among the others, maximum-likelihood estimation
(MLE) method offers an attractive approach for the local-
ization problems since it is asymptotically efficient, unbiased
and it does not require prior information [3],[4]. In fact, it
has been shown that MLE method achieves the Cramer-Rao
lower bound (CRLB) at small shadowing variances [3]. The
maximum likelihood estimator of the emitter location requires
the minimization of a non-convex cost function. Since this cost
function exhibits numerous local minima, its global minimiza-
tion is usually realized by means of numerical approaches.
One approach is to employ grid search where the algorithm
scans all possible grid points in the localization space. The
grid point that maximizes the likelihood is selected as the
location of the emitter. In a grid-search algorithm, the size of
the grid elements must be chosen small to obtain more accurate
location estimates. However, smaller grid size increases the
computational complexity.

The need for reduced complexity grid search tech-
niques arises in several fields. For example, a variable-mesh,
derivative-free optimization algorithm, namely contracting-
grid search method, is used to derive interaction locations in
compact gamma cameras in [5]. In [6], the location of a sound
source in a distributed sensor network is estimated using a grid-
based multi-resolution search to reduce the complexity of an
exhaustive maximum likelihood estimator and a smarter multi-
resolution search is proposed based on searching around the
highest energy reading sensor. [7] proposes a low-complexity
positioning procedure that simply searches for the global mini-
mum around the sensor exhibiting the smallest local maximum
of the cost function and it is shown that it outperforms the
naive approach that searches for the global minimum around
the sensor reporting the largest signal strength. In [8], a tree
search algorithm (TSA) is used to reduce the computational
complexity of grid search algorithm in sensor networks assum-
ing that the power of the transmitter to be located is known
and it is shown that the performance of the TSA algorithm
closely achieves the performance of least squares estimator
with significantly reduced computational complexity.

In this paper, we propose a reduced complexity itera-
tive grid-search algorithm for locating primary emitters with
unknown power in cognitive radio networks. The proposed
technique is based on refining search space based on the



minimization of a cost function. We show that a significant
complexity reduction is achieved by the proposed method at
the cost of a small performance loss. The performance of
this iterative grid-search method is also studied under different
grid-spacing values and/or with different number of iterations
and the limits of the proposed solution is also determined.

The organization of the paper is as follows: In Section II,
we introduce the network and signal model and assumptions
used in this work. In section III, we provide the theoretical
background of ML approach for emitter localization and
introduce full and reduced complexity grid search techniques.
We present simulation results in Section IV and conclude the
paper in Section V.

II. ASSUMPTIONS

A. Network model

We consider a cognitive radio network model consisting
of a number of secondary users (nodes) deployed at known
but arbitrary locations in a given geographical area. These
radio nodes monitor the received power level due to a pri-
mary transmitter whose location and power is not known to
the secondary nodes. We assume that only a single primary
emitter is active at any given time. Each node is equipped
with an omni-directional antenna and the nodes report their
location information and the received signal strength (RSS)
measurements due to the primary transmission to a fusion
center through a common channel. We assume that there is no
information loss in the delivery of sensor measurements to the
fusion centre. The fusion center processes RSS measurements
to estimate the location of the primary emitter.

B. Signal model

We assume that one primary user is active at any given
time and the objective is to estimate its location. Transmission
from the primary emitter to the sensors is assumed to be omni-
directional and the signal propagation is governed by a log-
distance path loss model such that the noise-free mean received
power (in dBm) at the ith sensor is given by

mi = 10 log
10

PT − 10ρ log
10

di (1)

where i = 1, 2, ..., Ns is the sensor number, Ns is the
number of sensors, PT is the transmit power of the pri-
mary emitter, ρ is the path-loss exponent, and di is the
distance between the transmitter and the ith sensor, di =
√

(xi − x0)2 + (yi − y0)2, and (xi, yi) and (x0, y0) are ith
sensor’s and the emitter’s locations, respectively.

We assume that each sensor experiences log-normal shad-
owing. If the fast fading effects are sufficiently averaged over
time then the resulting unknown measured power from the
emitter to the ith sensor is given by

ri = mi + wi (2)

where w ∼ N(0, σ2) is the gain/loss in dB due to shadowing
and σ is called the shadowing spread. The received power ri at

a distance di from the emitter is then a normal random variable
with mean mi and variance σ2 and its pdf is given by:

p(ri) =
1√
2πσ2

e−
(ri−mi)

2

2σ2 (3)

III. EMITTER LOCATION ESTIMATION

Assuming that the received signal strength values are inde-
pendently distributed and each having a log-normal shadowing,
the conditional probability of observing all Ns sensor outputs
given θ is written as

p(r|θ) =
Ns
∏

i=1

1√
2πσ2

e−
(ri−mi)

2

2σ2 (4)

where θ=(x0, y0) is the emitter location parameter to be
estimated. An estimate of the emitter location can be obtained
by minimizing a cost function which requires calculating the
sum of squared differences between each sensor’s emitter
power estimate and average of all sensor estimates [9]:

θ̂ = min
x,y

Ns
∑

i=1

(

log (pid
ρ
T,i)−

1

Ns

Ns
∑

j=1

log (pjd
ρ
T,j)

)2

(5)

where pi = 10
ri
10 and dT,i is the distance between ith

sensor and the test location T . A closed-form solution of this
minimization problem is intractable. A numerical solution of
θ̂ can be obtained by grid search algorithms. In a grid search
algorithm, the solution space is divided into a number of grids
and a cost function is calculated for each grid center. The
center of the grid that minimizes the cost function is selected
as the solution.

A. Full grid search

Assuming that the region of interest (ROI) within which the
primary emitter and the sensors lie in a square of length L,
and the ROI is divided into smaller squares of search elements
(grids) of length K , the total number of elements needed for
an exhaustive search is (L/K)2. A sample configuration is
illustrated in Fig. 1 to show all 100 possible grid elements in
a scenario for which L/K ratio is 10. In this figure, 5 sensor
locations are shown with circles whereas the actual emitter
location is marked with a diamond shape. The value of the
cost function calculated at each grid location are also shown
in the figure. As seen from the figure, the minimum value of the
cost function which is 3 for this example, is obtained around
the actual emitter location. The estimated emitter location is
shown with a square at the center of the grid for which the
cost is minimum.

A full grid search algorithm may result in an irreducible
error floor for given non-zero grid sizes due to quantization
even when there is no noise in the sensor measurements. The
amount of the quantization noise is limited by the grid size.

B. Iterative grid search

A full search algorithm is brute-force therefore it does
not use any scheme to reduce the number of computations.
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Fig. 1. An example of full grid search containing 100 grid elements.

However, in an emitter localization problem many cost func-
tion computations may not actually be required. Iterative grid
search algorithm can be initialized in different configurations
based on the initial selection of the search partitions. For
example, for a 2x2 partitioning, ROI is divided into four
quadrants and initial candidate locations are set at the centres
of each quadrant. After calculating the cost function at each
candidate location, search space is reduced to one fourth of
the previous search area and it is re-centred at the location
that provides the minimum of the calculated cost values. The
iterations are run in this way for a given number of levels to
achieve desired grid resolution. Final grid size at the end of
the last level is given by L

QM/2 where Q is the number of
partitions and M is the number of levels.

An example of 2x2 partitioning (Q = 4) is illustrated in
Fig. 2 for a 3 level iteration. In this example, the same sensor
and emitter placement of Fig. 1 is used. As seen from the
figure, the minimum cost values of 42, 19 and 1 are achieved
at successive iterations. At the end of the third iteration, the
emitter location is estimated to be the centre of the grid that
results in minimum cost value.

Similarly higher number of partitions can be obtained by
dividing the ROI into smaller areas. Increased partitioning
reduces the grid resolution, however it results in increased
number of computations as well. The total number of required
cost function calculations for the proposed iterative search
algorithm is QxM .

The proposed algorithm is summarized below:

IV. SIMULATIONS

We ran Monte Carlo trials to simulate sensor measurements
based on the described scenarios. In all simulations, one
primary emitter and a number of sensors were placed randomly
in a 1km by 1km square area. We assumed independent
log-normal shadowing of given dB spread and log-distance
path loss model with a fixed path-loss exponent of 3.5. The
performance results are presented in terms of mean of the

Algorithm 1 Iterative grid search

Initialize the center of the search space
xc = 0, yc = 0

repeat

Place candidate locations
Evaluate the cost function
Select min of cost function
Set next candidates
m← m+ 1

until m = M

42
646

447 831

185 177

35
19

1
31

40 91

Fig. 2. An example of 3 level 2x2 partitioning for iterative grid search.

location estimation error, µ, which is defined by

µ =
1

S

S
∑

i=1

√

(x0 − x̂i0)2 + (y0 − ŷi0)2 (6)

where (x0, y0) is the actual emitter location, (x̂i0, ŷi0) is
the estimated emitter location in ith simulation and S is the
number of Monte Carlo simulations.

A. Full search

In order to evaluate the performance of the full search
method with different grid sizes, we simulated random net-
works with 50 nodes (sensors) and ran 1000 simulations at
each dB spread values ranging from 0 to 12dB for the grid-size
values of 10, 20, 25, 40 and 50m. The mean localization error
is shown in Fig. 3. As seen from this figure, the grid search
method performs better with decreased grid size. However,
the number of cost function calculations increases significantly
with reduced grid size. For grid sizes of 10, 20, 25, 40 and
50m, the full search requires 10000, 2500, 1600, 625 and 400
cost functions calculations, respectively.

B. Iterative search

We ran 1000 Monte Carlo simulations for 4 and 9 levels of
2x2 and 4x4 partitions. We evaluated the performance of the
algorithm at different shadow spread values ranging from 0 to
12dB. The results are shown in Fig. 4. Also shown in the figure
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Fig. 3. Performance of full grid search using different grid sizes
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Fig. 4. Performance comparison of full and iterative grid search at various
partitioning and iteration levels versus shadowing spread

is the performance of full grid search with a grid size of 10m.
As seen from this figure, the performance of the iterative grid
search improves with an increase in the number of partitions
and levels when the dB spread is less than 6dB. However, when
the dB spread is higher than about 6dB, increasing the number
of levels and/or the number of partitions does not improve the
performance. For lower dB spread values the performance of
9 level 4x4 iterative grid search is very close to that of full
search. The full search requires 10000 calculations whereas 9
level 4x4 iterative search requires only 144 calculations.

We also evaluated the performance of the algorithm with
different number of sensors ranging from 20 to 80 at a shadow
spread of 6 dB and the results are shown in Fig.5. As seen
from the figure, the gap between full and iterative grid searches
decreases as the number of sensors increases.

C. Search space initialization

Our regular iterative algorithm sets a search space centred
at the origin of the region of interest and it does not rely
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Fig. 5. Performance comparison of full and iterative grid search at various
partitioning and iteration levels versus number of sensors

on any sensor measurements or sensor measurement related
metric in setting the initial search space. In this section, we
look at the performance of the iterative algorithm when the
initial search space is set based on two different approaches.
The first approach sets the search space around the sensor that
reports the highest RSS (the maximum approach). The rational
is that the sensor reporting the maximum RSS is more likely
to be closer to the emitter than the rest of sensors. Even though
this is true when the shadow spread is low, the condition
may not be satisfied when the closest sensor is blocked by
obstacles (hidden node problem). This approach is used in
[6] to locate sound sources. In the second approach, the cost
metric in (5) is calculated at a very close neighbourhood of
each sensor location. This metric generates local maxima at the
sensor neighbourhood and the sensor location that results in
the minimum of these maxima is set as the centre of the search
space (the minimax approach). It is reported in [7] that this
approach outperforms the naive approach that searches around
the receiver reporting the largest RSS in emitter localization
in shadow fading.

We compared the performances of search space initializa-
tion schemes at different shadow spread values ranging from
0 to 12dB for 9 level 2x2 partitions. At each dB spread value,
we have performed 1000 Monte Carlo simulations and mean
estimation errors are plotted in Fig. 6. In this figure, the max-
imum approach sets the search space around the sensor that
reports the maximum RSS whereas the minimax approach sets
the search space around the sensor that results in the minimum
of maximum cost values. Both techniques use a search space of
L/2 by L/2 whereas our proposed regular iterative approach
performs the search inside L by L square centred at the origin.
As seen from this figure, the minimax approach performs better
than the maximum approach; however the regular approach
outperforms both the minimax and the maximum approaches
at higher dB spread values. Please note that the minimax
approach requires Ns additional cost function calculations
compared to the maximum and the regular approaches.

In order to evaluate the effect of initial search space size
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Fig. 7. Performance of maximum approach for different search space sizes

on the performance of maximum and minimax approaches, we
have performed simulations using different search space sizes
of L, L/4, and L/8 in addition to L/2. The performances
of the maximum and the minimax techniques with different
search space sizes are shown in Figs. 7 and 8, respectively.
As seen from these figures, setting the initial search space too
large or too small deteriorates the performances significantly.
Comparing these figures to Fig. 6 reveals that the regular
approach outperforms the two techniques irrespective of the
initial search space size.

V. CONCLUSIONS

In this paper, we presented a reduced complexity iterative
grid-search algorithm for RSS-based localization of primary
emitter in cognitive radio networks. The performance of the
proposed method closely approached to the performance of
full grid search, particularly at small shadowing spread values
with significantly reduced computational complexity. Because
the grid search has coarser resolution at earlier stages, it
is possible that the global minimum of the cost function is
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Fig. 8. Performance of minimax approach for different search space sizes

missed, especially when the uncertainty is high due to larger
shadowing spreads. We also show that restricting the search
space based on the maximum and minimax criteria do not
improve the performance of the iterative search algorithm.
Future work will include devising smarter algorithms to close
the gap between the full search and the lower complexity grid
search at higher dB spread values. Future work will also cover
extending the reduced complexity grid search technique to
multiple emitter localization problem where the size of the
search space grows exponentially.
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