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ABSTRACT

We present an efficient pilot-assisted technique for downlink channel

estimation in Very Large MIMO (VL-MIMO) systems operating

in a 60 GHz indoor channel. Our estimator exploits the inherent

sparsity of the channel and requires quite low pilot overhead. It is

based on a coarse estimation stage that capitalizes on compressed

sensing, followed by a refinement stage to find the transmit/receive

spatial frequencies. Considering a ray-tracing channel model,

the system throughput is evaluated from computer simulations

by considering different beamforming schemes designed from the

estimated channel. Our results show that the proposed channel

estimator performs quite well with very low pilot overhead.

Index Terms— Massive MIMO systems, millimeter-wave

communications, compressive sensing, channel estimation.

1. INTRODUCTION

By looking to the future of wireless communications, we always

envisage higher data rates. To achieve this goal in a spectrum-scarce

scenario, research on VL-MIMO systems, also known as “Massive

MIMO”, has attracted significant attention in both the academic and

industrial sectors. The basic idea behind VL-MIMO systems is to

deploy hundreds, or even thousands, of antennas at the access node

(AN) to provide a significantly increased data rate and robustness

against interference, channel fading and antenna unit failures [1, 2].

In principle, an AN equipped with this amount of antennas is capable

to create extremely narrow beamformers, which translates into high

spatially selective transmission and simplified receive processing.

VL-MIMO is being considered as a key technology for

next-generation millimeter (MM)-wave wireless communications.

Although the MM-wave scenario imposes coverage restrictions due

to the severe signal attenuation, it enables the use of very small

antenna arrays, which are quite suitable for VL-MIMO deployments.

Some standards have been proposed to operate in the MM-wave

range (e.g. around 60 GHz) such as ECMA-37, IEEE 802.15.3c and

IEEE 802.11.ad [3], especially in future indoor communications.

Although coverage restriction appears as key challenge for

MM-wave systems, the huge number of antenna elements used on

the array allows for a high beamforming gain. In order to exploit

such a gain, the AN and the user equipment (UE) must have accurate

knowledge of the directions of the main incoming paths to transmit

and receive the wireless signals. This information can be obtained

through the use of pilot tones. The estimation can be performed

either in the uplink or in the downlink. Most studies focus on the

uplink case and consider time-division duplexing (TDD). In this
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case, the channel state information (CSI) is obtained from uplink

pilots and the base station (BS) exploits the channel reciprocity to

transmit through the downlink channel [1, 4]. However, current

wireless standards are dominated by frequency division duplexing

(FDD) mode and make a compatible massive MIMO system with the

current system is of significant interest. Moreover, in some scenarios

FDD is more effective than TDD such as in cases of symmetric traffic

and in delay-sensitive applications. Additionally, in TDD the user

is not able to estimate the instantaneous downlink channel, since

there is no downlink training sequence for CSI estimation [5]. In

this paper, we consider the problem of single user downlink channel

estimation in FDD VL-MIMO systems.

From a channel modeling viewpoint, in MM-wave

communications the electromagnetic wave has similar

characteristics to the light, which makes ray-tracing models

very attractive in practice, as it has been shown in [6]. Moreover, it

is worth mentioning that in indoor environments with transmission

in the MM-wave range, the propagation channel is likely to be

sparse [6, 7]. Exploiting the inherent channel sparsity appears as a

natural way to reduce the number of cell specific pilots.

Approaches to deal with sparse channels have been proposed in

the literature by resorting to Compressed Sensing (CS) theory [8,9].

The traditional Least Squares (LS) estimator imposes a length K =
O(Nt) to the pilot sequence whereas the CS approach results in a

length K = O(logNt). This makes possible to create short pilot

sequences for downlink channel estimation, avoiding the excess of

pilot tones on the wireless network [10]. Few methods exploiting

channel sparsity in MM-wave systems have been proposed recently

in [7, 11] for channel tracking in VL-MIMO in the downlink case.

These methods have only considered single-antenna terminals.

In this paper, we address the problem of estimating

beamforming directions on the downlink of a VL-MIMO system

operating in a 60 GHz indoor channel. Considering Orthogonal

Frequency Division Multiplexing (OFDM), a new pilot-assisted

method for channel estimation is proposed, which exploits the

inherent sparsity of the channel and requires quite low pilot

overhead. The proposed method is based on a coarse estimation

stage that capitalizes on CS, followed by a refinement stage to find

the transmit/receive spatial frequencies. Assuming a ray-tracing

channel model, the system throughput is evaluated from computer

simulations by considering three different beamforming/precoding

schemes, namely, a wideband precoder (WP), a phase-constrained

wideband precoder (PCWP), and a frequency dependent precoder

(FP). Our results show that the proposed channel estimator performs

quite well with very low pilot overhead.

Notations: Capital bold letters to denote matrices and lower bold

letters denote vectors. The superscripts [.]H , [.]T , [.]∗ stand for the

hermitian, transpose and conjugate, respectively. [H]m,n represents



the (m,n)-th entry of H, IM is the M ×M identity matrix and 0M
is the M ×M all-zeros matrix. The operators C{.} and ||.||l denote

cardinality and norm l, respectively.

2. SYSTEM MODEL

Consider an indoor environment with an AN deployed with Nt
antennas and a UE withNr antennas. At each link end a rectangular

array of multiple antennas is considered. We assume that AN and

UE are perfectly synchronized and operate according to an FDD

protocol. The transmission is performed using OFDM. The received

signal vector associated with the k-th discrete time instant and l-th
subcarrier, at a given UE, can be written as follows:

yr(k, l) =

Np∑

n=1

βnvR(θR,n, φR,n)v
H
T (θT,n, φT,n)

s(k, l)e−2πτnl∆f + z(k, l), (1)

where k ∈ Stime and l ∈ Ssubcarrier. These sets have cardinality K
andL respectively, and define the frequency and time indices chosen

for the transmission of the pilot tones. Np denotes the number of

paths, βn is the complex factor with Gaussian distribution along

the n-th ray, φR,n and θR,n are respectively the azimuth and the

inclination of the incoming rays relative to x − y plane. φT,n
and θT,n denote, respectively, the azimuth and inclination of the

rays at the transmitter. The parameter τn ∈ [0, τmax] assigns the

delay related to the n-th path, Ts is the OFDM symbol period and

∆f is frequency distance between two adjacent subcarriers. The

Nt × 1 vector vT (θT,n) and the Nr × 1 vector vR(θR,n) are the

array steering vectors for the transmitter and receiver, respectively.

The vector s(k, l) contains the pilot symbols used at the k-th time

instant and l-th subcarrier. Finally, the term z(k, l) represents the

additive noise whose entries are independent and follow a zero mean

complex-valued Gaussian distribution with variance σ2 [10].

The elements of the steering vectors describe the phase shift of

the signal due to the spatial distance among the antenna elements on

the array. Generically, we have:

[vγ(θγ,n, φγ,n)]i = e(ωxxi+ωyyi), γ ∈ {R, T} (2)

where ωx = 2πd
λ

cos (θγ,n) cos (φγ,n), and ωy =
2πd
λ

cos (θγ,n) sin (φγ,n), with xi and yi defining the spatial

position of the i-th antenna element on the plane x − y, d is the

inter-element antenna spacing and λ is the wavelength. In this

paper, ωx and ωy are called spatial frequencies, as they describe the

phase variation at each distance unit over the array [14]. The spatial

frequency unit is given in radians/mm.

3. CHANNEL ESTIMATION

The channel estimation process starts with the receiver probing

the channel in a set of pre-defined pairs of spatial frequencies,

(ωpR,x, ω
p
R,y) ∈ D, ∀ p ∈ {1, 2, . . . , P}. The set D has cardinality

C{D} = P and the index p identifies the p-th pair of the set D.

Each pair defines a given direction where the receiver measures the

associated energy. For the p-th spatial frequency pair, there are KL
measurements taken on the time-frequency grid given by:

rp(k, l) = w
H
p yr(k, l), p = 1, . . . , P, (3)

where rp(k, l) is the received signal measured on the p-th direction,

k-th time instant and l-th subcarrier and wp ∈ W is the combining

vector the signal received from the p-th direction, C{W} = P . By

inserting (1) into (3), we can rewrite rp(k, l) as:

rp(k, l) = s
T (k, l)V∗

TFpb(l) + z̃p(k, l), (4)

where VT = [vT (θT,1, φT,1), . . . , vT (θT,Np , φT,Np)], Fp
is a diagonal matrix whose n-th diagonal element is given

by [Fp]n,n = wH
p vR(θR,n, φR,n), b(l) = [β1e

−2πτ1l∆f ,

. . . , βNpe
−2πτNp

l∆f ]T , and z̃p(k, l) = wH
p z(k, l). Defining the

K × 1 vector xp(l) = [rp(0, l), . . . , rp(K − 1, l)]T concatenating

K time-domain measurements leads to

xp(l) = S
T
l V

∗
TFpb(l) + z̃p(l), (5)

where Sl = [s(0, l), s(1, l), . . . , s(K− 1, l)] is the Nt×K pilot

matrix, and z̃p(l) = [z̃p(0, l), . . . , z̃p(K − 1, l)]T .

A important question about Eq. (5) can be raised at this

point. Given that the number Np of multipaths is much smaller

than number of transmit antennas, can we reduce the number K
of measurements used for channel estimation? To answer this

question, consider a hypothetical case where the arrival angles of

the incoming paths are known at the receiver and we choose a

beamforming vector wp that points towards the direction of the

strongest path. Consider also that the spatial frequencies seen by

the transmitter are integer multiples of 2π/Nt, i.e. ωT,x, ωT,y ∈
{0, 2π

Nt
, . . . , (Nt−1)2π

Nt
}. This assumption implies that VT is

a 2-D Discrete Fourier Transform (DFT) matrix. Since the DFT

matrix is an orthonormal matrix, according to compressive sensing

theory Fpb(l) can be recovered from (5) with high probability if

K = O (Np logNt) and the elements of S chosen as i.i.d from a

Bernoulli distribution [10].

In our case, the strongest direction is not known at the receiver

and must be estimated. Moreover, the spatial frequencies come from

the continuum, being very unlikely that they are integer multiples

of 2π
Nt

. Despite these observations, we could ignore them and

apply compressive sensing algorithms by assuming that the spatial

frequencies are integer multiples of 2π
Nt

. However, this limits the

estimation at the space between the frequencies. A similar problem

was studied in [11], but the method proposed therein does not

consider OFDM and is restricted to a single-antenna receiver.

3.1. Coarse estimation

In reality, we do not know neither the directions of the paths nor

the number of paths. Additionally, the real spatial frequencies

that synthesize the beamforming vector wp and the array response

matrix VT in Eqs. (3) and (5) respectively, are unknown at the

receiver. As a starting point of our estimator, we create a set of

discrete spatial frequencies for the x, y axis of both sides of the link,

i.e. ωR,x, ωR,y, ωT,x, ωT,y ∈ {0, 2π
P
, . . . , (P−1)2π

P
} where

P > max(NT , NR) [11]. The estimation of the strongest path starts

with receiver searching for the direction that has the highest energy.

The search is performed according to the following criterion:

wo = argmax
p

∑

l

∑

k

|wH
p yr(k, l)|2, wp ∈ W. (6)

The vector wp is generated according to the discrete spatial

frequencies ω
(p)
R,x and ω

(p)
R,y as shown below

[wp]i =
1√
Nr

e(ω
(p)
R,x

xi+ω
(p)
R,y

yi), i = {1, . . . , NR}, (7)



where xi and yi are the coordinates of the i-th antenna element at

the receive array.

Based on wo, from Eq. (6), the incoming signal along the

strongest path during K consecutive time instants is given by:

ybeam(l) = [wH
o yr(0, l), . . . , w

H
o yr(K − 1, l)]T

= S
T
l V

∗
D,T F̃ob̃(l) + z̃o(l) (8)

where VD,T is a Nt × P matrix with each column describing

the array response for a possible combination of ω
(p)
T,x and

ω
(p)
T,y, b̃(l) = [β̃1e

−2πτ1l∆f , . . . , β̃P e
−2πτP l∆f ]T ,

and β̃1, . . . , β̃P are independent random variables following a

zero-mean unitary-variance Gaussian distribution. F̃o is a P ×
P diagonal matrix, with the m-th diagonal element [F̃o]m,m =
wH
o wm, m = 1, . . . , P . We call attention to the difference between

Eqs. (5) and (8). The first one is based on the exact number of

multipaths, therefore the dimensions of vector b(l) and matrix Fp
are functions of Np. The second one is based on the number P
of predefined directions taken from the 2-D continuum of spatial

frequencies ωR,x and ωR,y.

We consider the “filtered” vector bfilt(l) = F̃pb̃(l) to identify

which one of the P directions best matches to the strongest

multipath. This vector is likely to be sparse due to the existence

of directions with very low energy coupling. By resorting to CS

theory, such a sparsity can be exploited to reduce the number of

pilots used for channel estimation [10]. If the receiver had a single

omnidirectional antenna, as in [11], F̃p would be an identity matrix

and bfilt(l) = b̃(l) and CS estimation performance would depend on

the “natural” channel sparsity.

Traditional LS estimation imposes a minimum number K =
O(Nt) of pilots to be used. However, such condition in a VL-MIMO

system would result in huge pilot overhead. Compressed sensing can

circumvent this problem by exploiting the sparse channel structure to

estimate the channel with high probability from K = O(log(Nt))
random measurements. Based on this observation, in this work

we consider the traditional Orthogonal Matching Pursuit (OMP)

algorithm to obtain an estimate of bfilt(l), i.e.:

min ||bfilt(l)||1 s.t. ||ybeam(l)− S
T
l VTbfilt(l)||22 < σ2. (9)

The estimation of the strongest direction is performed in a

similar way for each subcarrier frequency. The resulting set of

vectors b̂filt(1), . . . , b̂filt(L) associated with the different frequencies

can be arranged in a matrix Bfilt and combined using a function

g : CP×L → R
P×1, b̂filt(l) is chosen as

g(Bfilt)
.
=

L∑

l=1

|b̂filt(l)|2, (10)

After this combining step, we select the entry of bfilt whose absolute

value is the largest, i.e.:

i∗ = argmax
i

[g(Bfilt)]i. (11)

The value i∗ is associated with the i∗-th direction at the transmitter

(i.e. the i∗-th column of VD,T ) corresponding to the strongest

estimated direction (ωcoarse
R,x ,ωcoarse

R,y ). Table 1 summarizes the coarse

estimation steps of the proposed algorithm. A similar procedure

is performed to coarsely estimate the spatial frequencies of the

transmitter side. Therefore, by following the steps shown in Table 1,

we can obtain (ωcoarse
T,x ,ωcoarse

T,y ).

Table 1. Coarse estimation
Step 1 Quantize the spatial frequencies components:

ωR,x, ωR,y, ωT,x, ωT,y ∈ {0, . . . , (P−1)2π
P

},

where, P > Nt.
Step 2 Find ω̂R,x and ω̂R,y which give the strongest direction.

[wp]i =
1√
Nr
e(ω

(p)
R,x

xi+ω
(p)
R,y

yi), i = {1, . . . , NR},

wo = argmaxp
∑
l

∑
k
|wH

p yr(k, l)|2, wp ∈ W.
Step 3 We calculate ybeam(l)

ybeam(l) = [wH
o yr(0, l), . . . , wH

o yr(K − 1, l)]T

ybeam(l) = STl V
∗
D,T F̃ob̃(l) + z̃o(l)

Step 4 Use OMP, described in [12], to estimate bfilt(l) = F̃pb̃(l)

b̂filt(l) = ||bfilt(l)||1 + ||ybeam(l)− STl VTbfilt(l)||22 < σ2

Step 5 Repeat Steps 3 and 4 for l ∈ Psubcarrier
Bfilt = [b̂filt(1), . . . , b̂filt(L)]

Step 6 Use the function g : CP×L → C
P×1

to combine the b̂filt(l) ∀ l ∈ Ssubcarrier
g(Bfilt)

.
=

∑L

l=1 |b̂filt(l)|2
Step 7 Choose the index of bfilt whose absolute value is the largest.

i∗ = argmaxi[bfilt]i, where

i∗-th column of [VT ]i∗ is the strongest direction

that corresponds to the pair (ωcoarse
R,x ,ωcoarse

R,y ).

3.2. Refinement of the estimates

After the coarse estimation, an optimization is performed to assign

the direction that maximizes a specific cost function. This is a

refinement step that consists in adjusting ωcoarse
R,x and ωcoarse

R,y based on

the maximization of the energy of the received signal. We consider

the following problem:

[ωref
R,x(l), ω

ref
R,y(l)] = arg max

(ωR,x,ωR,y) ∈ R2
J(ωR,x, ωR,y, l)

where J(ωR,x, ωR,y, l)
.
=

K∑

k=1

|wH(ωR,x, ωR,y)y(k, l)|2, (12)

and w(ωR,x, ωR,y) is the steering vector associated with the pair

(ωR,x, ωR,y), and each element [w(ωR,x, ωR,y)]i follows the same

formulation as in (7). The final estimates are given by averaging

over the L subcarriers, i.e. ωref
R,x = (1/L)

L∑
l=1

ωref
R,x(l), and ωref

R,y =

(1/L)
L∑
l=1

ωref
R,y(l).

The algorithm corrects the spatial frequencies, i.e. the

beamforming direction, through small steps ∆. This can be done

using the so-called “search region” algorithm, which basically

consists in evaluating, in a given iteration, the cost function (12)

for a set of ∆-spaced points around the one selected in the

previous iteration. The method seeks for the largest value of

this cost function among the candidate points and selects the one

leading to the maximum value. The algorithm stops according the

desired granularity. Differently from the coarse estimation step, the

refinement step does not take into account the set of predefined

directions W . The algorithm takes one predefined direction,

(ωcoarse
R,x , ω

coarse
R,y ), and searches for the best pair (ωR,x, ωR,y) ∈ R

2

that optimizes (12).

Since ωref
R,x and ωref

R,y have already been obtained, this

information is then used to refine the transmit spatial frequencies.

This refinement is based on the maximization of the following



Table 2. Refinement of the transmitter spatial frequencies

Step 1 From the coarse estimation, use the spatial frequencies

at the transmitter, ωcoarse
T,x and ωcoarse

T,y ,

as initial values:

ψ0,x = ωcoarse
T,x and ψ0,y = ωcoarse

T,y

step size: ∆
granularity adjustment constant : ǫ

[w]i(ω
ref
R,x, ω

ref
R,y) =

1√
NR

e(ω
ref
R,xxi+ω

ref
R,yyi),

i = {1, . . . , NR}
Step 2 Calculate the beam signal coming from

the direction (ωref
R,x, ω

ref
R,y)

ybeam(l) = [wH(ωref
R,x, ω

ref
R,y)y(0, l), . . . ,

wH(ωref
R,x, ω

ref
R,y)y(K − 1, l)]T

Step 3 Update ψt,x and ψt,y
ψ∆+,x = ψt,x +∆
ψ∆−,x = ψt,x −∆
ψ∆+,y = ψt,y +∆
ψ∆−,y = ψt,y −∆

Step 4 Assign the new spatial frequency

[ψx, ψy] = argmax(ψx,ψy) |vH(ψx, ψy)S
∗
l ybeam(l)|2, where,

[v]i(ψx, ψy) =
1√
Nt
e(ψxxi+ψyyi), i = {1, . . . , Nt}

ψx ∈ {ψ+∆,x, ψ−∆,x} and ψy ∈ {ψ+∆,y, ψ−∆,y}
Step 5 If

[ψt,x, ψt,y] = [ψt−1,x, ψt−1,y ]
do ∆ = ∆/ǫ and go back to step 2. Otherwise, go forward.

Step 6 If the number of iterations t < To,

set t = t+ 1 and go back to Step 3, otherwise

ωref
T,x = ψt,x and ωref

T,y = ψt,y

function:

[ωref
T,x(l), ω

ref
T,y(l)] = arg max

ωT,x,ωT,y

|vH(ωT,x, ωT,y)S
∗
l ybeam(l)|2,

(13)

where (ωT,x, ωT,y) ∈ R
2, v(ωT,x, ωT,y) follows the same

formulation as in (7), except by the index p and the number of

antennas, which is NT instead of NR. As for the receive spatial

frequencies, the final estimates of ωref
T,x and ωref

T,y are obtained by

averaging over the L subcarriers.

In principle, the refinement of receive and transmit spatial

frequencies could be performed jointly by updating the spatial

frequencies at the transmitter and receiver in a iterative process.

However, such an approach would imply a higher computational

complexity. In this paper, we consider a lower complexity approach,

where this refinement is done separately at each link end. According

to our results, good performance can be obtained with this approach

for line-of-sight (LOS) scenarios. Table 2 summarizes the procedure

used in the refinement of the transmit spatial frequencies. A similar

procedure is used in the refinement of the receive spatial frequencies,

except that Step 2 is not used and Step 4 performs the maximization

defined in (6).

4. SIMULATION RESULTS

The proposed algorithms are evaluated using Shannon’s capacity

formula by considering three beamforming schemes as follows:

• SVD-based beamforming: derived from the right singular vector

of the frequency-dependent channel matrix (i.e. each subcarrier

Table 3. Simulation Parameters
Environment Indoor (LOS)

Carrier Frequency 60 GHz

Multiplexing Scheme OFDM

Subcarrier Bandwidth 360 kHz

Number of Subcarriers 512

System Bandwidth 0.18 GHz

Number of pilots Subcarriers 32

FFT size 1024

Payload period 1.389 µs

Cyclic prefix 347.22 ns

OFDM symbol period 3.1252 µs

Maximum Tx Power per AN 2 mW

Thermal Noise Level −174 dBm/Hz

Noise Figure 6 dB

Number of Tx Antennas 64

Number of Rx Antennas 16

Distance Between the Antennas λ/2
UE speed 1 m/s
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Fig. 1. System throughput (bps) for three types of beamforming.

The time interval between two consecutive blocks is 0.1s and the

number of OFDM symbols is 20.

has different beamforming weights). Perfect knowledge of the

full instantaneous channel matrix is assumed;

• Steering vector-based beamforming: designed from the

only knowledge of the estimated spatial frequencies, i.e.

[v(ωT,x, ωT,y)]i = e(ωT,xxi+ωT,yyi);

• Round-phase beamforming: The design of the steering

vector is constrained to four different predefined phases only.

Specifically, the phases associated with each entry of the steering

vector are rounded to the closest phase among the four ones.

The simulations are performed according to the parameters of

the Table 3 and channel coefficients are generated according to the

ray-tracing model used in [13]. The performance is evaluated in

terms of the system throughput considering the transmission of a

single data stream.

Fig. 1 shows the system throughput for the three beamforming

schemes. Note that the gap between the singular value

decomposition (SVD)-based and steering vector-based beamforming

solutions is almost negligible. This result indicates that the steering

vector approach is preferable due to its much lower complexity

compared to the SVD-based beamforming. This has a direct impact

on the hardware implementation for VL-MIMO systems.

It is worth mentioning that the SVD-based beamforming results

from a linear combination of the rays while the steering vector-based
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Fig. 2. System throughput (bps) for three types of beamforming.
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Fig. 3. System throughput (bps) in a very low SNR scenario.

beamforming is designed based on the spatial frequencies of the

strongest (LOS) path only. As the LOS path retains most of the

received signal energy, transmitting along the LOS direction only

is preferable in the considered indoor scenario. Note also that,

although SVD-based beamforming may yield a higher throughput in

non-LOS scenarios, the frequency dependence of this method makes

its implementation challenging, whereas the steering vector-based

beamforming does not have such a restriction. Another aspect that

deserves attention in Fig. 1 is related to the pilot overhead required

to achieve such a performance. For the results shown in this figure,

the pilot overhead is 0.0039% only. This observation corroborates

the effectiveness of the proposed channel estimation to operate with

very few number of pilots in a VL-MIMO context. Fig. 2 shows

similar results but now considering only five OFDM symbols as

pilots implying a low overhead of 9.74× 10−4%.

In Fig. 3, we consider a very low signal-noise ratio (SNR)

scenario. The system parameters are the same as those used in

the previous results, except that the transmitted signal power is two

hundred times lower. As can be concluded from this figure, our

channel estimation algorithm still operates satisfactorily and starts

to fail around a distance of ten meters from the AN.

5. CONCLUSION

We have investigated the overhead reduction of a VL-MIMO system

operating in a MM-wave scenario. A two-step channel estimator

exploiting the sparse nature of the downlink channel is proposed.

Our results show that the proposed method achieves a quite low

pilot overhead while ensuring very accurate channel estimates.

Our simulations considered an indoor LOS channel and different

transmit beamforming schemes, indicating that the steering vector

based precoder has a similar throughput performance compared

to the SVD-based one, being a good solution from a hardware

implementation viewpoint. Perspectives include the extension of the

proposed method to the channel tracking problem and a performance

evaluation in non-line-of-sight (NLOS) scenarios.
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