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ABSTRACT

Many modern computer vision systems combine high dimen-
sional features and linear classifiers to achieve better classi-
fication accuracy. However, the excessively long features are
often highly redundant; thus dramatically increases the sys-
tem storage and computational load. This paper presents a
novel feature selection algorithm, namely cardinal sparse par-
tial least square algorithm, to address this deficiency in an
effective way. The proposed algorithm is based on the sparse
solution of partial least square regression. It aims to select a
sufficiently large number of features, which can achieve good
accuracy when used with linear classifiers. We applied the
algorithm to a face recognition system and achieved the state-
of-the-art results with significantly shorter feature vectors.

Index Terms— Feature selection, sparse partial least
square, face recognition

1. INTRODUCTION

“Curse of dimensionality” are often referred by researchers
when explaining the difficulties dealing with the high dimen-
sional data in optimization, numeric analysis, machine learn-
ing, and etc [1]. Never the less, the exteriorly contradicting
phrase “blessing of dimensionality” have recently appeared
to describe the opposite effects. Donoho pointed out that high
dimensional data are inevitable and would be surely helpful
if one exploits the blessings [2]. In this paper, we present a
feature selection algorithm, namely the cardinal sparse partial
least square algorithm, which exploits the blessings by keep-
ing the number of selected features large.

It is well known that two manifolds that are generated
by continuous functions can be better separated by a hyper-
plane if they are projected into higher dimensional space. Hall
proved that asymptotically high dimensional data tends to lie
at the vertices of a simplex [3]. He further showed that the
classification accuracy converges to 1 asymptotically if cer-
tain conditions meet. The kernel trick in support vector ma-
chine is based on the same theory [4].

Based on these observations, computer vision researchers
are in favor of the combination of high dimensional features
and linear classifiers [5, 6]. It is easier to design this kind
of system since longer features can represent various aspects

of the data. High dimensional features are formulated by
different techniques: concatenation of different types of fea-
tures [6], spatial pyramid and partition of the images [5], and
self-expansion features [7]. The dimension of these features
varies from tens of thousands to several millions.

However, excessively long features increase storage load
and computational complexity. Chen et al. showed that a
system saturates at certain length of features–adding new
features shows no or very little impact [8]. Dimension
reduction methods–including feature selection and feature
transformation–are necessary to reduce the system complex-
ity with little or no accuracy loss.

Feature selection is normally used when data contains ir-
relevant or redundant features. Irrelevant features are com-
mon in bioinformatic data, in which a very small amount of
the features are associated with the classification or regression
response; on the contrary, features in computer vision prob-
lems are often highly redundant. Comparing to the aforemen-
tioned feature transformation techniques, feature selection al-
gorithms are able to generate longer feature vectors, which is
important for classification accuracy.

Feature selection is a combinatorial problem which is NP-
hard. Applying sparsity constraints, often an L1 norm of the
coefficients in the objective function, yields a good approxi-
mation. Jolliffe et al. gave a sparse solution of the principal
component analysis [9]. Inspired by their work, Qiao et al.
applied sparsity to the linear discriminant analysis [10]; Chun
and Keles applied sparsity to the partial least square (PLS)
regression [11].

The algorithm proposed in [11] optimizes the target func-
tion by a predefined threshold value, which is not directly re-
lated to the number of selected features. This makes it diffi-
cult to determine the number of selected features by observ-
ing the saturation effect. It aslo shows high computational
complexity, especially when the number of features and the
number of samples are large.

We adapt the sparse PLS algorithm and propose a novel
and efficient method–cardinal sparse partial least square
(SPLS)–that is more suitable for computer vision problems
by directly targeting the number of selected features. The
performance of the cardinal SPLS algorithm are illustrated in
a face recognition system. The rest of the paper is organized
as follows. In section 2, we give brief introduction of PLS



and sparse PLS algorithm. The proposed cardinal SPLS algo-
rithm is presented in section 3. Experiments using simulated
data and face recognition data are presented in section 4. Fi-
nally, conclusive remarks and topics for our future work are
discussed in section 5.

2. SPARSE PARTIAL LEAST SQUARE

2.1. Partial Least Square Regression

Partial least square regression (PLSR) models the relationship
between the predictors1 and the response variables by means
of latent variables. It is a linear regression model that projects
predictors into a new set of latent variables in a lower dimen-
sional subspace. The projection optimizes the discriminant
property of the latent variables.

LetX be theN ×pmatrix of zero-mean predictor sample
data and Y be the N × q matrix of zero-mean response sam-
ple data, where N is the number of samples, p is the number
of the predictors, and q is the dimension of the response vari-
ables. PLS decomposes X and Y into the form

X = TPT + E
Y = TQT + F

, (1)

where the N × K matrix T is the latent component matrix
of X and Y , K is the number of latent variables, P and Q
are the orthogonal loading matrices, E and F are the residual
matrices. The superscript T denotes the matrix transpose.

The latent component matrix T is derived from T = XW ,
where the p × K matrix W is the PLS projection direction
matrix whose columns are the PLS projection directions. The
k-th direction vector ŵk is found by solving the optimization
problem

maximize wTMw
subject to wTw = 1

wTSXXŵl = 0 l = 1, . . . k − 1
, (2)

where M = XTY Y TX and SXX = XTX is the covariance
matrix of the predictors.

2.2. Sparse PLS

Sparsity can be achieved by adding L1 norm term into (2).
However the problem is not convex, thus no direct numeric
solution is available. By introducing a surrogate variable c,
Chun and Keles [11] transformed the objective function into
the form

minimize −κwTMw
+(1− κ)(c− w)TM(c− w)
+λ1 ‖c‖1 + λ2 ‖c‖22

subject to wTw = 1

, (3)

1Note, in this paper the term “predictor” has the same meaning as the
term “feature”. They are both used because of the preference in statistics and
machine learning.

where the variables are w and c. For simplicity we chose
κ = 1/2. The problem can be approximately solved by alter-
natively optimizing the object function with regard to variable
c andw. When c is fixed, the analytical solution forw is avail-
able.

When w is fixed, the objective function becomes a stan-
dard elastic net form:

minimize
(
ZT c− ZTw

)T (
ZT c− ZTw

)
+

+λ1 ‖c‖1 + λ2 ‖c‖22
, (4)

where Z = XTY .
If λ2 is large, the solution of c can be found by a soft

thresholded estimator.
The soft-thresholding function is given by

ĉ = sign(c) (|c| − ηmax(|c|))+ , (5)

where (x)+ is defined as

(x)+ =

{
0 if x < 0

x if x ≥ 0
. (6)

Here the parameter η, η ∈ (0, 1), is a replacement of the
parameter λ1 which controls the sparsity of w.

After ŵk is found from the optimization problem (3), ma-
trices X and Y are deflated. The procedure iterates until all
projection directions are found. The iteration number is the
number of latent variables K.

For clarity and simplicity, we denote this algorithm as
SPLS-η.

3. CARDINAL SPLS ALGORITHM

3.1. Cardinal SPLS

Recall the computer vision systems we described in the sec-
tion 1, our goal is to select a sufficiently large number of fea-
tures. In practice, this goal is difficult to achieve with the
SPLS-η algorithm, because the parameter η is not propor-
tional to the number of selected features. SPLS-η does not
specify whether and how different η value should be used in
each iteration.

We first rewrite the equation (4). Let A(k−1) be the se-
lected feature set after the iteration step k − 1. At iteration k,
we shall not penalize the objective function for selecting fea-
tures that have been already selected in A(k−1). Denote B(k)

as the weight matrix where B(k)
ii = 1 if i /∈ A(k−1); all other

elements in B(k) are zeros. To get a sparse solution of c at
iteration k, the objective function becomes

minimize
(
ZT c− ZTw

)T (
ZT c− ZTw

)
+

+λ1
∥∥B(k)c

∥∥
1
+ λ2 ‖c‖22

. (7)



Imposing λ2 = ∞, the soft-thresholding function 5 be-
comes

ĉ = sign(c)
(
|c| − s(c, n(k), A(k−1))

)
+,

(8)

where n(k) is the number of features that we select at iteration
k, and s

(
c, n(k), A(k−1)

)
is the n(k)-th largest value of the set{

x|x = |ci| , i /∈ A(k−1)
}

.
Next, we will calculate n(k) given n–the cardinality of

the target feature set. We assume that each feature contribute
equally to the object function at the iteration step k. Note
that earlier selected features contribute to later iterations, we
derive the following equation to determine n(k):

n(k) =

[
2(K − k + 1)

K(K + 1)
· n
]
, (9)

where [·] denotes the nearest integer function, K is the num-
ber of latent variables.

The proposed algorithm is described in algorithm 1. For
simplicity, our algorithm is based on SIMPLS paradigm [12].

Algorithm 1 Cardinal Sparse PLS Feature Selection
given training data X and Y , the target number of features n,
and the number of latent variables K
normalize X and Y with zero means
iterate k = 1, . . . ,K

1. Z = XTY

2. calculate n(k) by (9)

3. find c(k) and w(k) by solving (3) using (7) and soft-
thresholding function (8)

4. A(k) = A(k−1) ∪
{
i | c(k)i 6= 0

}
5. calculate W (k) by PLS regression using XA(k) and Y ,

where XA(k) denotes the predictor data matrix including
only selected features in A(k)

6. deflate X by XA(k) = XA(k)

(
I − P (PTP )−1PT

)
,

where P = XT
A(k)XA(k)W

(
WTXT

A(k)XA(k)W
)−1

3.2. Selection of the K

The experimental results show that the cardinal SPLS algo-
rithm performs equally well when K ≥ 3. For K ≥ 10, the
performance varies only slightly. This observation can be ex-
plained from equation (9). When k → K, n(k) ≈ 2

K2n. For
largeK, only a few variables are selected in later iterations. In
practice we can simply chooseK between 3 and 10. Larger K
values increase the computational complexity without much
benefit. This guidance aligns with the empirical practices that
have been suggested by other researchers [13, 14].

4. EXPERIMENTAL RESULTS

4.1. Simulated Data

Our experimental data set contains 100 data samples. The
feature vector has dimension of 1000, among which the first
200 variables are the true features which are generated from
an underlying true data model, and the rest 800 features are
iid Gaussian noise generated from N (0, 0.3). The true data
model is a linear model:

xi = ziA+ ei
yi = ziB + fi

i = 1, . . . , 100, (10)

where zi ∈ R10 are the latent variables that are generated
from N (0, 1), A ∈ R10×200 and B ∈ R10×5 are the conver-
sion matrices, ei and fi are addition iid Gaussian noise that
are generated from N (0, 0.5). Matrices A and B are gener-
ated from N (0, 0.2) and N (0, 0.3) during initialization.

We compared the cardinal SPLS algorithm with three
other variable selection algorithms: naive variance, group
LASSO [15], sparse PCA [16] and SPLS-η. The naive vari-
ance variable selection method simply selects predictors with
the highest variance value. All competing algorithms selected
around 200 predictors from the same simulated data. To il-
lustrate the effect of signal to noise ratio, we chose 3 different
standard deviation values of ei and fi (0.5, 0.75 and 1). We
repeated the experiments 100 times and the average recall
values of each algorithm are listed in Table 1.

Table 1. Recall Performance on Simulated Data

METHOD σ = 0.5 σ = 0.75 σ = 1 σ = 1.5

Naive Variance 0.977 0.422 0.026 0
Group Lasso 0.599 0.483 0.524 0.219
Sparse PCA 0.722 0.620 0.491 0.051
SPLS-η 0.827 0.665 0.556 0.358
Cardinal SPLS 0.869 0.738 0.595 0.372

Table 1 clearly demonstrates the superiority of the cardi-
nal SPLS algorithm against other methods.

We also evaluated the computational complexity of dif-
ferent algorithms using the simulated data. Each algorithm
selected 2K features from the original 5K, 10K and 50K fea-
tures. Table 2 shows the computational run time in seconds.

Table 2. Computational Run Time on Simulated Data

METHOD 5K 10K 50K

Group Lasso 8.0 12.9 60.3
Sparse PCA 135 138 157
SPLS-η 4.9 10.1 117.1
Cardinal SPLS 0.7 0.8 1.5



4.2. Application in Face Recognition

4.2.1. Frontal Face Recognition System

In this section we demonstrate the performance of the car-
dinal SPLS feature selection algorithm in a face recognition
system. The system recognize a query face image given a
gallery image dataset.

We used local Gabor binary patterns (LGBP) feature de-
scriptor [17] and a linear model classifier in our experiments.
The models are built in this way: for each person, we train a
model–linear classifier–using his/her image(s) in the gallery
as positive samples and a preselected face image dataset as
negative samples. During the query stage, the system evalu-
ates the query image against all models and assign it to the
one that gives the highest classification score.

We aligned, scaled and rotated all images according to the
location of the eyes. Each face image has the size 140× 154
pixels. The LGBP features were generated using 40 Gabor
filters (5 scales and 8 orientations), uniform local binary pat-
terns codes(LBPu2

8 ) and 7× 7 blocks. The histograms of the
LBP codes were L2 normalized. The negative image dataset
contains 1522 frontal face images that are collected from ATT
[18], CMU PIE [19], MOBIO [20], FEI [21], SUMS [22] face
databases. To ensure the generality, we used MOBIO face
database for feature selection training.

4.2.2. FERET Face Database Result

We used the FERET face database [23], to evaluate the per-
formance of the cardinal SPLS algorithm.

The raw LGBP feature vector has dimension over 115K.
It would be intractable to use this long feature vector in a
model based classification system. It is also difficult to apply
any embedded feature selection method directly. We executed
feature selection in two stages: screening stage and moder-
ate stage. In the screening stage, we used the naive variance
feature selection method to select 20K features that has the
greatest variance. In the moderate stage, we applied the car-
dinal SPLS feature selection algorithm to further reduce the
feature dimension to 10K.

We compared cardinal SPLS feature selection algorithm
with naive variance, SPLS-η, and ANOVA method. The per-
formance scores are plotted in Figure 1. The score reported
in the figure is the recognition rate, which is the ratio of the
number of correct recognized images to the total number of
the query images.

The Figure 1 shows that the system using cardinal SPLS
algorithm saturates faster than the naive variance and ANOVA
algorithms as the feature dimension increases. The cardinal
SPLS has slightly better performance than the SPLS-η algo-
rithm. But comparing to SPLS-η, the cardinal SPLS algo-
rithm is much faster.

We also compared our results to the state-of-the-art results
of the FERET database in Table 3. Fa, Fb, Dup1 and Dup2 are
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Fig. 1. Comparison of Different Feature Selection Algorithms
on FERET fa Face dataset

the most used datasets from the Feret database. Each dataset
addresses a different challenge in face recognition. The last
column shows the feature vector length used in the comparing
system.

Table 3. FERET Face Database Recognition Result

METHOD Fa Fb Dup1 Dup2 Features

[17] 2005 0.98 0.97 0.74 0.71 519K*
[24] 2007 0.975 0.995 0.795 0.778 2.9M
[25] 2012 0.99 0.93 0.76 0.78 39K*
[6] 2012 0.972 0.985 0.853 0.855 75K
Our system 0.981 0.99 0.784 0.782 10K

* Estimated from the paper descriptions.

5. CONCLUSIONS

We have proposed the cardinal SPLS algorithm that selects
the most informative and discriminant features given the tar-
get cardinality. The proposed method is more suitable for
computer vision problems, in which the raw features are
highly redundant. The evaluation on the simulated data and a
face recognition system proves the efficiency and superiority
of the algorithm.

From our experiments, we noticed the high computational
complexity of the cardinal SPLS algorithm if the raw feature
vectors are extremely long (over 100K). In our face recog-
nition system, we incorporated a screening stage to select
a moderate number of features before applying the cardinal
SPLS algorithm. In such a case, an improper screening algo-
rithm may lower the system performance. Future work will
concentrate on fast algorithms that is capable of handling ul-
tra high dimensional data.

We have provided a Matlab implementation of the cardi-
nal SPLS algorithm at http://goo.gl/BA2OHe.
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