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ABSTRACT
Empirical mode decomposition (EMD) is a recently proposed
method to analyze non-linear and non-stationary time series
by decomposing them into intrinsic mode functions (IMFs).
One of the most popular application of such a method is noise
elimination. EMD based denoising methods require a robust
threshold to determine which IMFs are noise related compo-
nents. In this study, detrended fluctuation analysis (DFA) is
suggested to obtain such a threshold. The scaling exponen-
tial obtained by the root mean squared fluctuation is capa-
ble of distinguishing uncorrelated white Gaussian noise and
anti-correlated signals. Therefore, in our method the slope of
the scaling exponent is used as the threshold for EMD based
denoising. IMFs with lower slope than the threshold are as-
sumed to be noisy oscillations and excluded in the reconstruc-
tion step. The proposed method is tested on various signal to
noise ratios (SNR) to show its denoising performance and re-
liability compared to several other methods.

Index Terms— Empirical mode decomposition, De-
trended fluctuation analysis, Denoising, Thresholding

1. INTRODUCTION

A common approach in denoising is decomposing the noisy
signal into its components and applying a thresholding
scheme [1]. Wavelet transform based thresholding is a well-
known and popular denoising method where the performance
depends on the thresholding approaches and estimators [2, 3],
as well as the trial and error method of the selection of or-
thogonal basis.

The empirical mode decomposition (EMD) is an alterna-
tive method to analyze non-linear and non-stationary signals
[4]. After applying EMD, a finite number of amplitude and
frequency modulated (AM/FM) zero-mean oscillations called
intrinsic mode functions (IMFs) are obtained. IMFs are ex-
tracted as the signal dependent semi-orthogonal basis func-
tions via an iterative algorithm called sifting. On the other
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hand, it is a challenging study to explain the meaning of each
IMF, or determine which IMF refers to noise, that is the main
obstacle in EMD based denoising.

Detrended fluctuation analysis (DFA) [5] can be consid-
ered as an enhanced version of Hurst exponent to analyze
non-stationary time series [6, 7]. Slope of DFA, α more
clearly describes the statistical properties of a process than
the Hurst exponent. The special cases α = 0.5, α = 1 and
α = 1.5 correspond to completely uncorrelated white noise,
pink noise, and Brownian noise, respectively. Moreover, the
slope α can also be considered as an indicator of roughness
[8]: the larger value, the smoother time series or slower fluc-
tuations. Here, we present a method where we use α as a
quantitative measure to select the noisy IMFs.

Denoising performance of any thresholding based method
using wavelet transform or EMD depends on the used thresh-
old estimator. The most popular threshold for wavelet denois-
ing T = σ̂

√
2 lnN with the robust variance estimator, σ̂ =

median (| ci |: i = 1, . . . , N) /0.6745 (ci states the wavelet
coefficients of the noisy signal in the ortogonal basis) [2, 3],
it is clear that the value of threshold is determined by the
distribution of coefficients belonging to both noise free sig-
nal and the noise. Therefore, threshold value depends on the
SNR and the properties of the noise, which may cause inaccu-
rate threshold estimation. For EMD based applications, white
Gaussian noise (WGn) and fractional Gaussian noise (fGn)
referenced models [9, 10] or information theoretical methods
including mutual information [11, 12] are applied to analyze
the discrepancy of the scores in order to determine the irrel-
evant or noisy IMFs. However, these are all reference and
comparison based approaches. In this study, we propose a
DFA thresholding for EMD based denoising as a robust met-
ric to determine IMFs of the noise. The excluded oscillations
are detected and accepted as noise by comparing their statis-
tical properties instead of comparing with the others. Noisy
IMF detection performance of the algorithm is tested on syn-
thetic and real signals at low SNR levels, compared to wavelet
based soft and hard thresholding. While the mentioned meth-
ods above are based on the comparison of referenced or mod-



eled systems, our approach uses DFA score without compar-
ing with other results which is the main advantage of the pro-
posed DFA-EMD based denoising.

2. THE EMD ALGORITHM

The EMD has been introduced as a tool of a data driven de-
composition method for multicomponent signal so that sum
of the IMFs is equal to the original signal [4] . IMFs satisfy
two criteria: First, the number of the extrema and the number
of zero crossings must be equal or must differ by one at most.
Second, the mean of the envelopes determined by the local
maxima and minima called upper and lower envelope should
be zero. Therefore, instantaneous frequency (IF) fluctuations
of IMFs can be decreased [13]. The most important process
of the EMD algorithm to extract IMFs is called Sifting, which
is composed of the following steps [14]:
(i) Find local maxima,Mi, i = 1, 2, . . . , and minima mk

,k = 1, 2, . . . , in x (n).

(ii) Compute the interpolating signals M(n) = fM (Mi, n),
and m(n) = fm(mk, n) using cubic spline, which are the
upper and lower envelopes of the signal.

(iii) Compute mean of the envelopes, e(n) = [M(n) +
m(n)]/2.

(iv) If e(n) satisfies the IMF requirements, keep it as an IMF,
and substract e (n) from the signal; x (n) = x(n)− e(n).

(v) Return to step (i) and stop, after x (n) remains nearly un-
changed.

(vi) After obtaining an IMF,ϕi (n), substract IMF from the
signal x (n) = x(n) − ϕi (n) and return to (i) if x (n)
is not constant or trend, r (n).

Hence, the original signal can be reconstructed by the sum of

IMFs described by x(n) =
L∑
i=1

ϕi(n) + r(n), where L is the

number of IMFs. EMD has been an alternative approach for
signal analysis such as instantaneous frequency, autoregres-
sive parameter estimation, classification, audio coding [15–
18], and denoising which is the most popular application of
EMD.

3. DETRENDED FLUCTUATION ANALYSIS

Hurst exponent [19] is defined as the index of long-range
dependence, mild or wild randomness. In case of non-
stationarities, it is not a suitable method which causes spu-
rious score [5]. Hence, DFA is a recently proposed method
to obtain more reliable scaling exponent for signals having
non-stationary properties especially different trends with un-
known duration. The DFA score is also adopted in a similar
way with the Hurst exponent in log-log scale. The basic prin-
ciple of the DFA is to compute how the average root mean
square (RMS) fluctuation of the time series around the local

trend in the box size varies as a function of the time scale
n. The first step is to find integrated time series y (k) after
removing the mean by

y (k) =

k∑
i=1

[x (i)− x̄] , 1 ≤ k ≤ N (1)

where x̄ states the average of the time series in the range
[1, N ]. y (k) is divided into n sample long segments called
box size for DFA. For each box, the estimated local trend
yn (k) is found by using least square linear fitting. Finally
the RMS fluctuation F (n) is computed by subtracting yn (k)
from the integrated series y (k) as:

F (n) =

√√√√ 1

N

N∑
k=1

[y (k)− yn (k)]
2 (2)

After calculating the F (n) for various n, the slope, α of
the curve log (F (n)) / log (n) is called the scaling exponent
which demonstrates power-law behaviour as F (n) ∝ nα.

The reason that α gives a reliable metric is it yields α =
0.5 for completely uncorrelated data such as white noise, α =
1 for pink noise and α = 1.5 for Brownian noise. When
0 < α < 0.5, the signal is called “anti-correlated” such that
large fluctuations are followed by small ones and vice versa.
When it is in the range between 0.5 and 1.0, temporal corre-
lations are available. If α > 1, the correlations do not exhibit
power-law behaviour versus time. The slope is also consid-
ered an indicator of the roughness. The larger the value, the
smoother the time series. In other words, small value indi-
cates more rapid fluctuations [8]. However, the linear region
for the log-log plot used to find α is another parameter of the
DFA related applications. The selection of the box size n is
signal dependent, but the range 4 ≤ n ≤ 16 is the most popu-
lar and reliable linear region, which is successfully applied in
biomedical signal processing such as electroencephalography
(EEG), [8, 20] and electrocardiography (ECG) [21].

4. PROPOSED DFA THRESHOLDING FOR EMD
BASED DENOSING

EMD based denoising methods focus on determining irrele-
vant and information free IMFs. After decomposition of a
corrupted noisy signal x (n), few IMFs may be the oscilla-
tions of the noise free original signal x̄ (n), and the others
correspond to noise η (n). From this point of view, a reliable
metric to determine noisy IMFs is the main step of a denois-
ing algorithm.

Our proposed method is based on using the DFA slope, α
as a threshold. The method is independent of any estimators
depending on other components, is based on excluding the
IMFs with lower α score than the threshold θ. The threshold
is determined by the static score of the DFA slope α = 0.5



for white noise. However, the EMD algorithm has a drawback
called "mode-mixing". In other words, an IMF is not a mono-
component, and it is mixed with the other oscillations in the
signal. Therefore, the threshold is determined with 0.2 con-
fidential interval. The detailed steps of the proposed method
are described as:

a) Let x(n) = x̄(n) + ση(n) be the observed noisy signal
where x̄ (n) and η (n) state the noise free signal and the
AWGN with unknown variance σ respectively.

b) Apply DFA to decomposed IMFs, ϕi (n) of x (n) to com-
pute αi of each IMF. i = 1, 2, . . . , L.

c) Determine θ = 0.7 as the sum of white noise slope 0.5
with 0.2 confidential interval.

d) Then reconstruct a denoised signal estimate using the
IMFs with higher slope score αi than the threshold as:
x̃ (n) =

∑
j

ϕj (n) , j = {i | αi > θ}.

Therefore, irrelevant IMFs which contain mostly white noise
can be determined and removed from the observed signal.

5. RESULTS

The proposed DFA thresholding for EMD based denosing
(DFA-EMD) method is evaluated using signals with various
SNRs. IMFs with DFA scores, and the denoised versions
are given in the rest of the section, comparing the perfor-
mance with wavelet denosing and another EMD-based denos-
ing method given in [9].
1. The well-studied piecewise regular signal with 0 dB SNR
additive white Gaussian noise, and 2048 samples, shown in
Fig. 1 is applied to the proposed method.

Fig. 1. The decomposition of piecewise regular signal with 0
dB SNR.

After obtaining DFA slopes of the IMFs in Fig. 1, the
noisy components should have lower slope α than the thresh-
old θ, and the results are shown in Fig. 4a. The IMFs with
αi ≤ 0.7 are determined as the oscillations of the AWGN.
IMFs above the threshold are combined to estimate the de-

noised signal, x̃ (n) =
12∑
j=3

ϕj (n). We compare the proposed

approach with wavelet thresholding, and the results are given
in Fig. 2.

Fig. 2. Comparison of the proposed DFA-EMD based denois-
ing at 0 dB SNR.

The proposed denoising method results in 6.066 dB SNR,
while hard and soft threshold wavelet denosing with univer-
sal threshold estimator at level 3 by Symlet8 result in -0.05,
and 1.277 dB, respectively. In our simulations, the mother
wavelet Symlet8 at level 3 shows more denoising perfor-
mance when compared to symlet3 and Symlet20 at level 7
and Daubechies2 at level 3 decomposition.
2. We applied the above procedure to the same signal with 20
dB SNR, and the decomposed IMFs are shown in Fig. 3.

As opposed to the results in Fig. 2 with 11 IMFs, 12 IMFs
are obtained in Fig. 3. Since there are two IMFs lower than
the threshold in the previous example, only IMF 1 has lower
slope (α1 = 0.282), as such it is not included in the recon-
struction. The slopes of the exponents of the IMFs are pre-
sented in Fig. 4b.

The DFA-EMD method can successfully denoise 20 dB
piecewise-regular signal, and the SNR becomes 22.373 dB.
However, the wavelet thresholding methods with resulting
SNRs of 26.508 and 24.901 dB give better results, which is



Fig. 3. Decomposition of piecewise-regular signal with 20 dB
SNR.

(a) 0 dB

(b) 20 dB

Fig. 4. DFA slopes of the decomposed IMFs for piecewise-
regular signal.

caused by the nature of any EMD algorithm namely mode-
mixing problem. In other words, some components of white
noise cannot be separated, and it is distributed to other IMFs.
3. The proposed method is also compared with a previous
EMD-based denoising called noise-only model [9], and the

Table 1. The comparison of the DFA-EMD denoising with
wavelet denoising at various SNRs
Signal SNR (dB) DFA-EMD (dB) Soft(dB) Hard(dB)

Piecewice-Regular

0 6.066 1.277 -0.050

10 15.586 14.120 10.215

20 22.373 26.508 24.901

Epileptic EEG

0 5.873 -0.043 -0.061

10 14.706 9.991 9.938

20 22.259 20.083 19.939

Normal EEG

0 5.940 0.111 -0.062

10 15.484 10.354 9.938

20 22.710 21.231 19.955

Bumps

0 5.900 7.522 7.521

10 12.941 11.825 11.825

20 19.412 12.631 12.631

results are given in Fig. 5. We observe that the fifth and the

Fig. 5. The WGn model [9] to identify noise free IMFs.

second IMF diverge from the theoretical noise-only model.

Thus,
5∑
i=1

ϕi for 0 dB and
2∑
i=1

ϕi for 20 dB are assumed as

WGn, and then the SNRs of the EMD denoising employing
the model above result in 5.46 dB and 22.320 dB SNR for
piecewise-regular signal. However, our proposed DFA-EMD
has denoising performance of 6.066 dB and 22.273 dB for
piecewise-regular signal.

4. The proposed method is also tested on EEG signals, and
Bumps signal to illustrate its performance. The results are
given in Table 1.

For piecewise-regular signal denoising, the proposed
EMD based method performs better than wavelet denois-
ing, when the SNRs are 0 and 10 dB. However, in the case
of 20 dB, it performs poorer than the wavelet methods. In
contrast, the resulting SNRs after denoising epileptic and
normal EEG signals have different trend; the DFA-EMD is
more successful for 0, 10 and 20 dB SNR, when compared
to wavelet soft and hard thresholding. Briefly, EMD-based
method suppresses noise for lower SNR, better than wavelet
methods.



6. CONCLUSION

We propose a detrended fluctuation analysis (DFA) threshold-
ing for empirical mode decomposition (EMD) based (DFA-
EMD) denoising. A few intrinsic mode functions (IMFs) of
a noisy signal may be components of the noiseless signal,
and the others may belong to the noise. DFA is deployed
as a metric to determine which IMFs are noisy oscillations
and to be excluded in the reconstruction step. The proposed
DFA-EMD based approach is independent of the SNR and
signal properties, which makes it advantageous over other
threshold estimators in wavelet or EMD denoising. Computer
simulations show that the denoising performance of the pro-
posed DFA-EMD method is better than wavelet soft and hard-
thresholding and a previous EMD-based denoising approach
in [9] at especially low SNR values.
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