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ABSTRACT
The minimum variance distortionless response (MVDR) and
the linearly constrained minimum variance (LCMV) beam-
formers are two optimal approaches in the sense of noise re-
duction. The LCMV beamformer can also reject interferers
using linear constraints at the expense of reducing the degree
of freedom in a limited number of microphones. However,
it may magnify noise that causes a lower output signal-to-
noise ratio (SNR) than the MVDR beamformer. Contrarily,
the MVDR beamformer suffers from interference in output.
In this paper, we propose a controllable LCMV (C-LCMV)
beamformer based on the principles of both the MVDR and
LCMV beamformers. The C-LCMV approach can control a
compromise between noise reduction and interference rejec-
tion. Simulation results show that the C-LCMV beamformer
outperforms the MVDR beamformer in interference rejection,
and the LCMV beamformer in background noise reduction.

Index Terms— Microphone arrays, frequency-domain
beamforming, MVDR, LCMV, controllable beamformer.

1. INTRODUCTION

Multiple acoustic sources are usually present in real situa-
tions. For speech processing applications such as teleconfer-
encing and hearing aids, noise reduction techniques are de-
veloped to achieve a high quality and preserve the intelligi-
bility of the desired signal. In single-channel signal enhance-
ment methods, both the desired signal and noise are filtered
at the same time [1]. While the speech quality is increased
in the Wiener filter, which is an example of a known noise-
reduction filter [1, 2], speech distortion will be increased in
the presence of interference. Exploiting spatial separation is
another solution to separate multiple signals and enhance the
desired signal using multiple microphones, which is called a
microphone array.

Beamforming is one of the techniques for microphone
arrays to estimate the signal arriving from a desired direction-
of-arrival (DOA), and separate different signal sources [3].
The basic principle is that the received signals through mul-
tiple microphones are synchronized by delays depending on
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the desired DOA using complex weighted filters and summed,
e.g., as in the delay-and-sum (DS) beamforming [4]. Besides
the spatial separation, signal enhancement is another issue
in the filter design, where the adaptive filters are designed
to minimize the noise and interference using the statistics
of the received signals. An adaptive multichannel filter
can provide a trade-off between noise reduction and sig-
nal distortion [5], e.g., the multichannel Wiener filter [6],
and the maximum SNR filter [4]. Some well-known exam-
ples of beamformer designs are the least-squares, multiple
sidelobe canceler (MSC) [7], generalized sidelobe canceler
(GSC) [8, 9], superdirective [10], minimum variance dis-
tortionless response (MVDR) [11], and linearly constrained
minimum variance (LCMV) [12] beamformers. For more
details about various beamformer designs, we refer the reader
to [4] and [13].

In this paper, we propose a new beamformer based on the
principles of the MVDR and LCMV beamformers using the
spectral decomposition [14–16]. Both are designed to min-
imize the output power subject to a unit output gain at the
desired DOA, and through exploiting the decomposition of
interfering signals, we can have multiple constraints to reject
the interference in the LCMV. Although the MVDR beam-
former has a degree of freedom (DOF) as many as the number
of microphones, the number of constraints degrades the DOF
of the LCMV beamformer [17]. Though there is a trade-off
between noise and interference reduction, the LCMV beam-
former may magnify the background noise [18] with having
high sidelobes [19]. Therefore, we explore a new flexible
beamformer based on the paradigm of minimum variance in
order to control the output signal-to-interference-plus-noise
ratio (SINR) and signal-to-interference ratio (SIR). That is,
we propose the controllable LCMV (C-LCMV) beamformer
with a variable number of constraints.

The rest of this paper is organized as follows. In Sec-
tion 2, we model the composition of multiple signal sources
in vector notation and design the MVDR and LCMV beam-
formers accordingly. In Section 3, we propose the C-LCMV
beamformer, and then explore the properties of this method in
simulations in Section 4. The work is concluded in Section 5.



2. PROBLEM FORMULATION

2.1. Signal model

We consider a microphone array, consisting of M omni-
directional microphones, receives broadband signals from
N acoustic sources besides a background noise, where
N ≤ M . In general, we model the received signals at
the frequency index f in a vector notation as y(f) =
[Y1(f) Y2(f) · · · YM (f) ]T, where Ym(f) is the mth mi-
crophone narrowband signal and the superscript T is the
transpose operator. We write the vector y(f) as a function of
the (known) steering vectors dn(f) and signal sourcesXn(f)
for n = 1, ..., N [4, 16] like

y(f) = d1(f)X1(f) +

N∑
n=2

dn(f)Xn(f) + v(f)

= D(f)x(f) + v(f), (1)

where v(f) = [V1(f) V2(f) · · · VM (f) ]T is the additive
background noise, x(f) = [X1(f) X2(f) · · · XN (f) ]T is
the collection of signal sources, and we define D(f) as the
M × N matrix containing all steering vectors relating to the
N signal sources, i.e.,

D(f) = [ d1(f) d2(f) · · · dN (f) ]. (2)

We assume that Xn(f) and Vm(f) are uncorrelated and zero
mean. Furthermore, we consider X1(f) as the desired signal
that we wish to extract from the observations, while Xn(f)
for n = 2, 3, . . . , N are interferers.

The correlation matrix of y(f) is defined as Φy(f) =
E
[
y(f)yH(f)

]
, where E[·] denotes mathematical expecta-

tion, and the superscript H is the transpose-conjugate operator.
If we assume all signal sources and noise are uncorrelated, we
can write the correlation matrix as

Φy(f) = D(f) Φx(f) DH(f) + Φv(f)

= d1(f)φX1(f) dH
1 (f) + Φin(f) + Φv(f), (3)

where Φx(f) = diag[φX1(f) φX2(f) . . . φXN
(f) ] is a

diagonal matrix of size N × N containing the variances
of the sources at the frequency index f , i.e., φXn

(f) =

E
[
|Xn(f)|2

]
, the correlation matrix of v(f) is Φv(f) =

E
[
v(f)vH(f)

]
, and Φin(f) =

∑N
n=2 dn(f)φXn

(f) dH
n(f)

is the interference correlation matrix. If the components of
the steering vectors are only phase shifts, which is usually the
case, then dH

n(f)dn(f) = M . As a result, we can deduce the
narrowband input SIR and input SINR respectively like

iSIR(f) =
φX1

(f)∑N
n=2 φXn

(f)
, (4)

iSINR(f) =
M φX1

(f)

tr [Φin(f) + Φv(f)]
, (5)

where tr [·] denotes the trace of a square matrix.
We apply a complex-valued filter, or a beamformer as we

refer to, h(f) = [H1(f) H2(f) · · · HM (f) ]T on the mi-
crophone outputs, that results Z(f) = hH(f) y(f) with the
variance of

ΦZ(f) = hH(f) d1(f)φX1
(f) dH

1 (f) h(f) + (6)

hH(f) [ Φin(f) + Φv(f) ] h(f).

With the distortionless constraint that hH(f)d1(f) = 1, we
can write the narrowband output SIR and output SINR respec-
tively like

oSIR[h(f)] =
φX1(f)

hH(f) Φin(f) h(f)
, (7)

oSINR[h(f)] =
φX1

(f)

hH(f) [ Φin(f) + Φv(f) ] h(f)
. (8)

2.2. Minimum variance beamformers

A fixed beamformer is a signal independent filter with a spe-
cific beampattern, e.g., the DS beamforming has a unit gain
at the desired DOA, i.e., hDS(f) = d1(f)/M . However the
desired signal is obtained from the desired direction, the out-
put signal suffers from interference-plus-noise except for the
unlikely cases when the nulls of the DS beamformer are sit-
uated at the direction of interferers. Signal dependent beam-
formers are designed adaptively to minimize the variance of
the output signal. The MVDR or the Capon method [11]
minimizes the output interference-plus-noise variance of the
beamformer [20], i.e.,

min
h(f)

hH(f) [ Φin(f) + Φv(f) ] h(f) (9)

subject to hH(f) d1(f) = 1,

and the MVDR beamformer is given by [4]

hM(f) =
[ Φin(f) + Φv(f) ]−1d1(f)

dH
1 (f) [ Φin(f) + Φv(f) ]−1d1(f)

. (10)

In the MVDR filter design, interferers are assumed to be un-
correlated with the desired signal; otherwise the desired sig-
nal may be suppressed. Herein, we generalize the MVDR
beamformer to derive the LCMV filter that nulls out N − 1
number of interferers and minimizes the noise variance, i.e.,

min
h(f)

hH(f) Φv(f) h(f) (11)

subject to hH(f) D(f) = iT
N ,

where iN is the first column of the N × N identity matrix,
IN . The solution for the LCMV beamformer is

hL(f) = Φ−1
v (f) D(f)[ DH(f) Φ−1

v (f) D(f) ]−1iN . (12)



3. PROPOSED METHOD

The optimization procedures in the MVDR and the LCMV
beamformers consist of the number of constraints and the
residual (interference-plus-)noise. To design a beamformer
which has properties between those beamformers, we now
introduce a general expression for the signal model. We di-
vide N signal sources into two sets of N1 and N2 sources as
x(f) = [ xT

N1
(f) xT

N2
(f) ]T. Therefore, the received signals

can be written like

y(f) = DN1(f) xN1
(f) + [ DN2

(f) xN2
(f) + v(f) ], (13)

where DN1
(f) and DN2

(f) are matrices containing the
steering vectors of the related signal sets, i.e., D(f) =
[ DN1(f) DN2(f) ]. We can rewrite the correlation matrix of
this decomposition as

Φy(f) = DN1(f) ΦxN1
(f) DH

N1
(f) + Φin,N2(f) + Φv(f),

(14)

where Φin,N2
(f) = DN2

(f) ΦxN2
(f) DH

N2
(f), and ΦxN1

(f)

and ΦxN2
(f) are the correlation matrices of the xT

N1
(f) and

xT
N1

(f) signal sets, respectively.
We apply the signal decomposition model (13) to pro-

pose a beamformer which we call the controllable LCMV (C-
LCMV) inspired from LCMV and MVDR beamformers. For
the set ofN1 signal sources, containing the desired signal, the
filter is constrained to null out the remaining N1 − 1 inter-
ferers, and the remaining N2 = N − N1 signal sources are
minimized together with the background noise, i.e.,

min
h(f)

hH(f) [ Φin,N2(f) + Φv(f) ] h(f) (15)

subject to hH(f) DN1
(f) = iT

N1
.

The C-LCMV beamformer is designed using the method of
Lagrange multipliers as

hC(f) = [ Φin,N2(f) + Φv(f) ]−1 DN1(f) (16)

[ DH
N1

(f) [ Φin,N2
(f) + Φv(f) ]−1DN1

(f) ]−1iN1
.

This optimal filter is controlled using a different number of
constraints, i.e. N1 = 1, 2, . . . , N . In particular cases, if
N1 = 1 or N1 = N , the filter will be the MVDR beamformer
or the LCMV beamformer, respectively. Therefore, the C-
LCMV beamformer has the following properties:

oSINR [hL(f)] ≤ oSINR [hC(f)] ≤ oSINR [hM(f)] , (17)

oSIR [hM(f)] ≤ oSIR [hC(f)] ≤ oSIR [hL(f)] . (18)

4. SIMULATION RESULTS

We investigate the performance of the C-LCMV beamformer
comparing with the DS, MVDR, and LCMV beamformers
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Fig. 1. Output SINR (left) and output SIR (right) of different
beamformers versus frequency (input SINR = 8 dB, and input
SIR = 13 dB).

in an anechoic environment. We use a uniform linear array
(ULA) which the distance between microphones is δ = 0.04
m, i.e., smaller than the half of the minimum wavelength to
avoid spatial aliasing, and the wave propagation speed is as-
sumed c = 340 m/s. By selecting the first microphone as the
reference microphone, the steering vector dn(f) = d (f, θn)
can be written as a function of the DOA of the nth signal
source, i.e., θn, as

dn(f) = [ 1 e−j2πfτ0 cos θn · · · e−j2(M−1)πfτ0 cos θn ]T, (19)

where j =
√
−1, and τ0 = δ/c is the delay between two

successive sensors at the zero angle.
In Figure 1, we plot narrowband oSINRs and oSIRs for

various number of constraints N1, where M = 9, and N = 5
white Gaussian signal sources at θ1 = π/6, θ2 = π/2, θ3 =
2π/3, θ4 = 5π/6, and θ5 = π. This figure illustrates that
the C-LCMV beamformer performs in the range between the
MVDR and LCMV beamformers. In the next experiments,
we use three speech signals and white Gaussian noise, which
are located at θn (for n = 1, 2, 3, and 4), and synthesized
according to the signal model (1). The desired speech signal
is an utterance of “Then, the sun shine”, and interferers are
utterances of “Why were you away?” and “Somebody decides
to break it!”.

The speech signals were sampled at fs = 8.0 kHz dur-
ing 1.28 sec. The desired speech signal is expected to be en-
hanced using the aforementioned filters in frequencies 0.1–
4.0 kHz, because the linear constrained beamformers may
have a low output SNR at low frequencies [18]. We divide
this multi-channel signal into 75% overlap frames with 256
samples, and transform them into frequency-domain using a
256-point discrete Fourier transform (DFT). Finally, the out-
put signal of designed filters are transfered into time-domain
using the inverse DFT.

The minimum output power beamformer is closely related
to the minimum variance beamformer with the distortionless
constraint and the perfect signal match [21]. Therefore, the
(interference-plus-)noise correlation matrix can be replaced
by Φy(f) in the filter designs (10), (12), and (16). We run
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Fig. 2. Output SINR (top row) and output SIR (bottom row)
of different beamformers versus number of microphones in
20 dB noise (left column) and versus input SNR level using
M = 9 (right column).

simulations using different number of microphones and back-
ground noise levels. Since two interfering speech signals may
have correlation with the desired signal, that is likely, in the
C-LCMV beamformer we only null them out and minimize
the power of the uncorrelated interfering signal by choosing
N1 = 3. Figure 2 shows that the broadband oSINR and oSIR
of the C-LCMV beamformer performs in the range between
the MVDR and LCMV beamformers.

The expectation is estimated by time averaging, and the
correlation matrix of the received signals, at a time instance t,
is estimated as

Φ̂y,t(f) =
1

B

B∑
b=1

yt,b(f) yH
t,b(f), (20)

where yt,b(f) is the bth spectral amplitude estimate out of
the last B estimates [22]. Moreover, the full rank correla-
tion matrix can be guaranteed by choosing the buffer size as
B ≥ M , and we choose B = 100. In practice, the correla-
tion matrix estimate may has error due to the limited num-
ber of samples in low iSNRs and the dominant desired sig-
nal. Diagonal loading [14] is a solution for this problem,
i.e., Φ̂y(f) ← Φ̂y(f) + γIM , that we choose γ = 10−4.
In −5 db broadband iSINR (20 dB background noise), Fig-
ure 3 shows spectrograms of the noisy signal at the first mi-
crophone, the output signals of beamformers using M = 11
microphones. Although the LCMV beamformer outperforms
the MVDR beamformer by removing interferers, the LCMV
beamformer distort the speech signal at low frequencies. The

Fig. 3. According to the order of plots from top to down: the
spectrograms of the noisy signal at the first microphone, the
output signals of the MVDR, LCMV, and C-LCMV beam-
formers.

experiment results indicate that the C-LCMV beamformer re-
moves interference tracks from the noisy signal without dis-
torting the desired signal at low frequencies.

5. CONCLUSION

The work presented in this paper has focused on signal en-
hancement in the presence of interference. The LCMV beam-
former may have infinite output SIR, but have a lower output
SNR than the MVDR beamformer. This problem is increased
dramatically using a high number of constraints to remove in-
terferers, especially at low frequencies and closely spaced in-
terference [18]. We have proposed the C-LCMV beamformer
being able to control the quality of the signal of interest, a
trade-off between noise reduction and interference rejection.
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