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ABSTRACT

In this paper, we devise a computational approach for design-

ing polyphase sequences with two key properties; (i) a phase

argument which is piecewise linear, and (ii) an impulse-like

autocorrelation. The proposed approach relies on fast Fourier

transform (FFT) operations and thus can be used efficiently to

design sequences with a large length or alphabet size. More-

over, using the suggested method, one can construct many

new such polyphase sequences which were not known and/or

could not be constructed by the previous formulations in the

literature. Several numerical examples are provided to show

the performance of the proposed design framework in differ-

ent scenarios.

Index Terms— Autocorrelation, peak-to-average-power

ratio (PAR), polyphase sequences, radar codes, waveform de-

sign

1. INTRODUCTION

A judicious approach to sequence design for active sensing

and communication systems is to seek for sequences with

small out-of-phase autocorrelations, also referred to as good

correlation properties [1]-[10]. The periodic (ck) and aperi-

odic (rk) autocorrelations of a sequence x ∈ C
N are defined

as

ck ,

N∑

l=1

x(l)x∗(l + k)mod N , 0 ≤ k ≤ (N − 1) (1)

rk ,

N−k∑

l=1

x(l)x∗(l + k) = r∗
−k, 0 ≤ k ≤ (N − 1) (2)

where in both cases, the lag k = 0 represents the energy of x,
and the out-of-phase lags are those with k 6= 0.

We note that, in many applications, the sequences x with

good correlation properties are not only constrained to have
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low peak-to-average power ratio (PAR),

PAR ,
‖x‖2

∞

1
N ‖x‖22

, (3)

but are also assumed to be finite-alphabet. In terms of PAR,

the best squences are those with unimodular entries (i.e.

|x(l)| = 1, ∀ l). As a result, the construction of finite-

alphabet unimodular sequences has been studied widely in

the literature. In particular, several (analytical) constructions

are available in this case: such sequences for any given length

can be constructed for example by Zadoff, Chu, Golomb

polyphase, P3 and P4 methods [3]. Other constructions in-

clude Frank, P1, P2, Px, and PAT methods that work only

when the length is a perfect square (N = M2) [3],[9]. Note

that the latter constructions present a unique property in their

phase values, namely that their phase argument is piecewise

linear. A generic piecewise linear polyphase sequence of

length N = MK can be formulated as follows [9]. Let the

matrix

Φ =




ϕ1,1 ϕ1,2 · · · ϕ1,K

ϕ2,1 ϕ2,2 · · · ϕ2,K

...
...

. . .
...

ϕM,1 ϕM,2 · · · ϕM,K


 (4)

include the phase values of a unimodular sequence x via the

identity

x = ej (vec(Φ
T )). (5)

Then x is a piecewise linear polyphase sequence (with pa-

rameters M and K) iff

ηm , ηm,k = ϕm,k+1 − ϕm,k (6)

is a fixed constant for 1 ≤ k ≤ K − 1. Note that piecewise

linear polyphase sequences are beneficial to practical imple-

mentations owing to the smaller number of variables involved

in their construction, as well as their simple structure. As an

example, Fig. 1 illustrates the phase values of the Frank se-

quence of length N = 25, with M = K = 5.



Fig. 1. The phase values of the Frank sequence {x(k)}Nk=1

of length N = 25 [3], illustrated based on the formulation in

(4)-(6) with φm,1 = 0 and ηm = 2π(m− 1)/5, 1 ≤ m ≤ 5.

In this paper, a fast computational method for designing

piecewise linear polyphase sequences with good correlation

is proposed. Particularly, we discuss in detail the sequence

design for desirable aperiodic correlation. The reasons for

choosing aperiodic correlation (and not its periodic counter-

part) are the following; (i) piecewise linear polyphase se-

quences with optimal periodic correlation are already known

in the literature (for instance the Frank sequence), and (ii)

the aperiodic autocorrelations are of specific interest due to

the higher difficulty of the associated design problem, see

e.g. [6]. We also note that a modification of the proposed

formulations to tackle the periodic case is straightforward.

The contributions of this work can be summarized as follows:

• The analytical construction methods yield polyphase

sequences with limited alphabet sizes. As a result,

the proposed method can lead to considerable im-

provements upon the currently known piecewise linear

polyphase sequences by alphabet size enlargement.

• The suggested formulation provides the possibility of

designing piecewise linear polyphase sequences for

lengths N = MK which are not perfect square, i.e.

for scenarios in which (M,K) 6= (
√
N,

√
N).

Consequently, using the proposed method, one can con-

struct a new set of piecewise linear polyphase sequences with

good correlation properties; a set with large cardinality whose

majority of elements are not known and/or cannot be con-

structed with currently known formulations. See Section 3

for some numerical examples.

Notation: We use bold lowercase letters for vectors and

bold uppercase letters for matrices. (.)T , (.)∗ and (.)H denote

the vector/matrix transpose, the complex conjugate, and the

Hermitian transpose, respectively. 1 and 0 are the all-one and

all-zero vectors/matrices. ‖x‖n or the ln-norm of the vector

x is defined as (
∑

k |x(k)|n)
1

n where {x(k)} are the entries

of x. The symbol ⊙ stands for the Hadamard element-wise

product of matrices. vec(X) is a vector obtained by stacking

the columns of X successively. Finally, ZQ denotes the set

{0, 1, · · · , Q− 1}.

2. THE PROPOSED METHOD

Let N = MK represent a twin factorization of N . Based

on the formulation in Section 1, a piecewise-linear polyphase

sequence x can be written as

x =




ejϕ1x1

ejϕ2x2

...

ejϕMxM


 ; xm =




1
ejηm

...

ej(K−1)ηm


 , ∀m, (7)

where ϕm = ϕm,1. Note that, depending on the factorization

of N , the parameter M (which denotes the number of linear

segments in the phase argument) can attain different values

ranging from 1 to N ; particularly, the case of M = 1 leads

to a structure that resembles the steering vectors associated

with uniform linear arrays, while M = N corresponds to a

sequence design with no piecewise-linearity constraint at all.

We assume that the elements of x belong to the Q-ary alpha-

bet ΩQ =
{
ej2kπ/Q : k ∈ ZQ

}
. Accordingly, we assume

that {ϕm} and {ηm} are of the form 2πk/Q, with k ∈ ZQ.

In the following, we employ the CAN computational

framework introduced in [5]. From an intuitive point of view,

a sequence with zero out-of-phase periodic correlation has

a flat spectrum in the frequency domain— in particular, the

more flat the spectrum, the smaller the out-of-phase periodic

correlations. The CAN algorithm in [5] (see also [1]) provides

the mathematical formalism that confirms such observations.

Namely, the periodic out-of-phase correlations of a sequence

x can be minimized conveniently via the optimization prob-

lem:

min
x,v

∥∥∥AH
x− v

∥∥∥
2

2
(8)

s.t. v is unimodular,

where x is constrained, e.g. as in (7), and A denotes the

N × N (inverse) DFT matrix, whose (l, p)-element is given

by

[A]l,p =
1√
N

ej2πlp/N , l, p = 1, . . . , N. (9)

Note that the aperiodic correlations of x are given by the pe-

riodic correlations of the sequence

x̃ =

(
x

0N−1

)
. (10)



Therefore, CAN considers the following frequency-domain

design problem to minimize the aperiodic out-of-phase corre-

lations of x:

min
x̃,ṽ

∥∥∥Ã
H
x̃− ṽ

∥∥∥
2

2
(11)

s.t. ṽ is unimodular,

in which x is constrained as described earlier, and Ã denotes

the (2N − 1)× (2N − 1) (inverse) DFT matrix. For given x̃,

the minimization of (11) with respect to ṽ is straightforward,

viz.

ṽ = ej arg(Ã
H
x̃). (12)

Due to the various constraints on x including the piecewise

linearity and a given phase alphabet, the optimization of (11)

with respect to x̃ (or equivalently x) appears to be more com-

plicated. However, to achieve a monotonically decreasing ob-

jective function, one can simply employ a separate optimiza-

tion of (11) with respect to the variables {ϕm} and {ηm}. In

order to obtain the minimizer {ϕm} of (11) for fixed ṽ and

{ηm}, we note that the objective function can be rewritten as

∥∥∥Ã
H
x̃− ṽ

∥∥∥
2

2
=
∥∥∥x̃− Ãṽ

∥∥∥
2

2
(13)

=

∥∥∥∥∥∥∥∥∥




ejϕ1x1

ejϕ2x2

...

ejϕMxM


−




v̂1

v̂2

...

v̂M




∥∥∥∥∥∥∥∥∥

2

2

+const1

=

∥∥∥∥∥∥∥∥∥




ejϕ11K

ejϕ21K

...

ejϕM1K


−




v̂1 ⊙ x
∗

1

v̂2 ⊙ x
∗

2
...

v̂M ⊙ x
∗

M




∥∥∥∥∥∥∥∥∥

2

2

+const1

where v̂m denotes the column vector consisting of the mth

K-tuple in the vector Ãṽ. Let um = v̂m ⊙ x
∗

m for 1 ≤
m ≤ M . Then it is easy to verify that the minimization of

(13) may be decoupled for different {ϕm}; namely, the min-

imizer ϕm , 2πgm/Q of (13) is given by the solution to the

following optimization problem:

min
gm∈ZQ

∑K
k=1

∣∣ejϕm − um(k)
∣∣2 . (14)

Consequently, the minimizer ϕm of (13) becomes

ϕm = ΨQ

(
arg

(
K∑

k=1

um(k)

))
, 1 ≤ m ≤ M, (15)

where ΨQ(.) yields the closest phase value to the argument

in the Q-ary alphabet. Now suppose {ϕm} and ṽ (equiva-

lently {v̂m}) are given. According to (13), the minimization

Table 1. The Proposed Algorithm for Designing Piecewise-

Linear Polyphase Sequences with Good Correlation

Input parameters: sequence length= N , alphabet size= Q, twin fac-

torization of N into (M,K).

Step 0: Initialize the variables {ϕm} and {ηm} of the form 2πk/Q
(k ∈ ZQ) randomly (or set the values by a previously known sequence).

Step 1: Form the sequence x using (7), based on the current values of

{ϕm} and {ηm}.

Step 2: Compute ṽ using (12).

Step 3: Compute {ϕm} using (15).

Step 4: Compute {ηm} using (17).

Step 5: Let ǫ =
∥∥∥Ã

H
x̃− ṽ

∥∥∥
2

. Repeat the steps 1-4 until

ǫ(s) = ǫ(s−1),

where s denotes the iteration number.

of (11) with respect to {ηm} may be accomplished using the

optimization problems

min
xm

∥∥xm − e−jϕm v̂m

∥∥2
2

(16)

s.t. xm has the structure in (7),

for 1 ≤ m ≤ M . Let ηm , 2πhm/Q, and note that one can

restate the objective function of (16) as

∥∥xm − e−jϕm v̂m

∥∥2
2

=

K∑

k=1

∣∣∣ej2πhm(k−1)/Q − e−jϕm v̂m(k)
∣∣∣
2

= const2 − 2ℜ
{

K∑

k=1

(e−jϕm v̂m(k))e−j2πhm(k−1)/Q

}
.

Hence, the optimization problem in (16) is equivalent to

max
hm∈ZQ

ℜ
{∑K

k=1(e
−jϕm v̂m(k)) e−j2πhm(k−1)/Q

}
.

(17)

Interestingly, the solution to (17) can be obtained efficiently

using an FFT operation due to the fact that the objective func-

tion represents the real-part of the Q-point DFT sequence as-

sociated with {e−jϕm v̂m(k)}Kk=1.

Finally, the steps of the proposed method are summarized

in Table 1. We note that the approach proposed in this work

relies on FFT operations and hence can be used efficiently for

large lengths N , or phase alphabet sizes Q.

3. NUMERICAL RESULTS AND DISCUSSIONS

We provide several numerical examples to show the perfor-

mance of the proposed method. As discussed earlier, the

method can be employed to design piecewise linear polyphase
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Fig. 2. Design of a piecewise linear polyphase sequence (of length N = 128) with good aperiodic autocorrelation, and param-

eters (M,k) = (16, 8), Q = 128: (a) the integer phases (, phase values ×Q/(2π)) of the sequence; (b) the autocorrelation

levels of the sequence.

sequences of non-square length. We use the proposed ap-

proach to design a piecewise linear polyphase sequence of

length N = 128 with (M,K) = (16, 8) and Q = 128. The

obtained sequence along with its normalized autocorrelation

level,

autocorrelation level (dB) , 20 log10

∣∣∣∣
rk
r0

∣∣∣∣ (18)

are presented in Fig. 2. The correlation peak sidelobe level

(PSL), viz.

PSL , max{|rk|}N−1
k=1 , (19)

of the sequences obtained during the iterations of the pro-

posed algorithm is shown in Fig. 3. A significant reduction

in the PSL of the sequences vs. iteration number can be ob-

served. We note that CAN minimizes an upper bound on the

PSL metric, and hence, the resultant PSL values in Fig. 3 are

not monotonically decreasing; see [5] and [6] for more details

related to this observation.

Next, we consider improving upon a certain piecewise lin-

ear polyphase sequence with good correlation. As an exam-

ple, we use the PAT sequence [9] of length N = 256 in order

to initialize the algorithm in Table 1. PAT sequences were

proposed recently, and have a PSL value which is the mini-

mum of those of Frank, P1, P2, and Px. While improving the

correlation properties of a PAT sequence by using numerical

methods is not simple, the said properties can be enhanced by

considering an alphabet size Q larger than that used by the

PAT sequences which is 2
√
N . In order to show the potential
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Fig. 3. The PSL values versus iteration number associated

with the obtained sequences through the iterations of the pro-

posed algorithm.

of such an approach in enhancing the correlation properties,

we choose a large alphabet size by setting Q to 216. Fig. 4

depicts the normalized autocorrelation level of the PAT se-

quence, as well as the level corresponding to the proposed

method. The PSL value corresponding to the initial PAT se-

quence is equal to 11.3086, while the obtained sequence has

a PSL value of 5.6359.

Finally, it can be interesting to examine how the factor-

ization of N into (M,K) affects the correlation properties
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Fig. 4. Enhancement of the aperiodic correlation properties

of the PAT sequence of length N = 256 via alphabet size

enlargement. The figure shows the normalized autocorrela-

tion level of the initial PAT sequence, along with that of the

enhanced sequence obtained by the proposed method.

of the obtained sequences. To study this aspect, we consider

N = 22 × 32 × 5 = 180, and Q = N . For all 18 divisors

of N = 180, we use the proposed algorithm 15 times with

different random initializations. Fig. 5 plots the best PSL

values for each case, obtained in the 15 trials . A consider-

able reduction in the obtained PSL values can be seen as M
grows large. To explain this behavior, we note that the num-

ber of free variables, i.e. degrees of freedom (DOFs) of the

problem, is determined by the number of variables {ϕm} and

{ηm}:

#DOFs =

{
2M M ≤ N/2,
M M = N.

(20)

As a result, the number of DOFs is increasing with M , which

lays the ground for a better performance of the method in

terms of the correlation PSL. However, increasing M might

increase the complexity of implementing the sequences in

practice— a trade off which should be dealt with wisely.
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