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ABSTRACT 

A great deal of interest has been paid to the time-varying 

autoregressive (TVAR) parameter tracking, but few papers 

deal with this issue when noisy observations are available. 

Recently, this problem was addressed for a TVAR process 

disturbed by an additive zero-mean white noise, by using 

deterministic regression methods. In this paper, we focus our 

attention on the case of an additive colored measurement 

noise modeled by a moving average process. More particu-

larly, we propose to estimate the TVAR parameters by using 

a variant of the improved least-squares (ILS) methods, ini-

tially introduced by Zheng to estimate the AR parameters 

from a signal embedded in a white noise. Simulation studies 

illustrate the advantages and the limits of the approach. 

Index Terms— Time-varying autoregressive model, un-

biased parameter estimation, colored noise, moving average 

process, deterministic regression approach. 

1. INTRODUCTION 

Time-varying autoregressive (TVAR) models have been 

used in a wide range of applications such as [1], [2]. For the 

last 30 years, two families of methods have been proposed to 

track the TVAR parameters: 

1/ the so-called “stochastic” family 

It includes recursive methods such as the recursive least 

squares (RLS) with forgetting factor and Kalman filtering
1
. 

2/ the “evolutive method” family, also called deterministic 

regression based methods 

In that case, the parameter evolutions are assumed to be 

weighted linear combinations of some basis functions. Power 

of time, Legendre polynomials and Fourier functions can be 

considered. If the weights are available or preliminary esti-

mated, the TVAR parameters can be deduced by summing 

all the weighted basis functions. See for instance [3], [4]. 

However, when the pth-order TVAR process is disturbed by 

an additive measurement noise, the above approaches lead to 

an estimation bias. To avoid this problem when the noise is 

white, both the TVAR process and the TVAR parameters 

                                                 
1 In that case, the TVAR parameters to be tracked are stored in the state 

vector. Random walk is usually used to model the evolution of the TVAR 

parameters. In addition, the noise appearing in the observation equation in 

the state space representation corresponds to the AR driving process. 

must be estimated if recursive stochastic methods are used. 

This leads to a nonlinear estimation issue that can be solved 

by using an extended Kalman filter (EKF), sigma point Kal-

man filters (SPKF), quadrature Kalman filter (QKF) or cuba-

ture Kalman filter (CKF). Nevertheless, these methods re-

quire a priori knowledge of the noise variances. To relax this 

constraint, multiple-model approaches such as the interacting 

multiple models (IMM) could be considered. In that case, 

several Kalman filter based estimators would be applied in 

parallel, but they would differ in the selections of the noise 

variances. As an alternative to the above recursive approach-

es, off-line methods based on cumulants could be also used 

especially in the non-Gaussian case, but this may lead to 

poor results because their estimates may have a high variance 

when few data are available. In [5], two authors of the cur-

rent paper have proposed a recursive errors-in-variables 

(EIV) based method. It combines a Newton-Raphson algo-

rithm to iteratively estimate the variance of the additive noise 

and a sliding off-line noise compensated Yule-Walker based 

method to deduce the TVAR parameters. In [6] and [7], the 

authors also proposed two kinds of unbiased estimation 

methods. These deterministic regression methods were based 

on an EIV algorithm or a subspace approach.  

In this paper, our purpose is to track the TVAR parameters 

when the measurement noise is additive stationary Gaussian 

and colored. This assumption is probably more realistic than 

the one corresponding to the additive white noise, because it 

does not deal with thermal noise alone, but also with other 

kinds of disturbances. 

To our knowledge, when the additive noise is colored, peo-

ple have rather focused their attention on the estimations of 

the signal parameters when the signal is “stationary”. More 

particularly, the estimations of the autoregressive (AR) pa-

rameters of the signal from noisy colored observations have 

been addressed. Thus, in [8], the noise is modeled by a first-

order AR process. To compensate the estimation bias in-

duced by the additive colored noise, the authors suggest 

extending the approach initially proposed by Davila in [9]. 

In the following, we will assume that the noise can be mod-

eled as a qth-order moving average (MA) process. 

A first “intuitive” idea would be to use a Kalman filter-based 

approach with a state vector including the p TVAR parame-

ters, the p last samples of the TVAR process, the q MA pa-

rameters and q other quantities describing the dynamics of 

the MA process. The way to select the MA driving process 



variance and the AR driving process variance could be ad-

dressed, as stated above, by using an IMM. 

However, this method is not reliable to get the MA parame-

ters. Indeed, a MA process defined by its MA parameters can 

be viewed as the output of a filter, the input of which is a 

specific realization of a zero-mean white Gaussian process. 

Nevertheless, this driving process can be also the output of 

any all-pass filter, the input of which would be another reali-

zation of this zero-mean white process. Therefore, several 

filters make it possible to obtain the same correlation func-

tion of the MA process. The transfer function of one filter 

can be deduced from another one by replacing their roots by 

their inverse conjugates. As a consequence, the estimations 

of the true MA parameters are not necessarily guaranteed 

with such a method. 

In [11] and [12], variants of Zheng’s method [10] were pro-

posed. In [13], we suggested using the prediction error meth-

od (PEM). This method is known to be asymptotically unbi-

ased and efficient in the Gaussian case, but its computational 

cost may be high. In addition, if the state representation is 

time-varying, the classical PEM is no longer applicable. 

For the above reasons, we propose to address the estimations 

of the TVAR parameters from observations disturbed by a 

MA noise, by using an evolutive method. More particularly, 

we aim at extending the method initially proposed by Zheng 

in [11]. Even if deriving this variant does not really pose 

theoretical problems, one thing of importance is to analyze 

its relevance and its limits in terms of signal-to-noise ratio 

(SNR), number of samples, etc. 

The remainder of this paper is organized as follows. The 

problem statement is given in Section 2. In Section 3, an 

estimation method for TVAR parameter based on the itera-

tive deterministic regression approach is proposed. In Sec-

tion 4, simulation results are provided. 

2. PROBLEM FORMULATION 

Let      be a real signal modeled by a pth-order TVAR 

process given by: 

      ∑             

 

   

       (1) 

where      is assumed to be the driving process which is a 

zero-mean stationary white noise with variance   
 . In addi-

tion, the TVAR parameters       are expressed by consider-

ing a function basis, as follows: 

      ∑        

 

   

  (2) 

where {     }          are the basis functions a priori defined 

and selected by the practitioner and {   }                      

are the corresponding weights. 

The process      is assumed to be disturbed by an additive 

zero-mean colored noise      modeled by a MA process: 

     ∑        

 

   

  (3) 

where      is a zero-mean white noise with variance   
  

which is uncorrelated with the driving process     . By 

adjusting the noise variance   
 ,    can be set to 1. 

The observation data are hence given by: 

                          (4) 

However, the TVAR parameters {       }        , the MA 

parameters {   }       
 and the variances   

  and   
  are un-

known and hence need to be estimated. 

Let us rewrite the above equations in a vector form by means 

of the following vectors: 

  [                  ]   (5) 

     [           ]   (6) 

and of the          column vector       defined by: 

      [                           ]
 
  (7) 

Hence, given (1), (2), (5) and (6), the TVAR process can be 

rewritten as follows: 

        
            (8) 

By pre-multiplying both sides in (8) by       and taking the 

expectation, one has: 

     [       
    ]        [         ]  (9) 

By introducing the square matrices of size        

                   and the          vectors: 

      [ 
                          ]

 
  

      [ 
                          ]

 
  

the corresponding correlation matrices and vectors satisfy: 

    [       
    ],      [         ]  (10) 

    [       
    ] 

 [

                     

   
                     

]  (11) 

 

    [         ] 

 [ 
                          ]

 
 (12) 

where       is the correlation function of the noise. 

At that stage, one can easily show that          and 

        . Therefore, (9) can be rewritten as follows: 

          (     ). (13) 

If the influence of the additive noise is not compensated in 

the above equation, the weight estimations would satisfy: 

                             (14) 

or 

       
       (15) 

It is the least squares estimation of   from the noisy observa-

tions. Given (13) and (15), one has: 

        
  (      )  (16) 

or equivalently: 

         
          

    . (17) 

From (16), it is easy to deduce that the LS estimate bias is 

equal to –    
        

       
In the next section, our purpose is to estimate the weight 

vector   by compensating the influence of the MA noise. 

  



Remark 1: let us recall that the correlation function       of 

the MA process      is given by: 

      

{
 

 
  

 (∑      

 

   

)                      

           

 

3. ESTIMATING TVAR PARAMETERS FROM  

NOISY OBSERVATIONS 

Even if another case can be considered, we assume that q   

for convenience of illustration. The same kind of develop-

ment could be done for    . In the following, let us intro-

duce the            weight vector  ̃ as follows: 

 ̃  [           ]
 
  (18) 

Then, let us define two other data and noise vectors:    

       [                                 ]
 
  

       [                                 ]
 
  

and also introduce the corresponding correlation matrices:  

 ̃    [[
     

      
] [  

       
    ]]  [

   ̅ 

 ̅ 
   

 ]  

 ̃    [[
     

      
] [  

       
    ]]  [

   ̅ 

 ̅ 
   

 ]  

 ̃    [[
     

      
]     ]  [

  
 ̅ 

]  

Here, as    ,  ̅  is necessarily a null vector. 

Similarly, let us consider the following correlation vector: 

 ̃    [[
     

      
]     ]  [

  
 ̅ 

]  

With the above vectors and covariance matrices, (13) can be 

extended as follows: 

( ̃   ̃ ) ̃   ( ̃   ̃ )  (19) 

By taking into account the structure of  ̃ ,  ̃ ,  ̃ , and  ̃ , 

(19) leads to: 

{
              

 ̅    ̅ 
    ̅ 

  
 

(20) 

The above equations are the key expressions to estimate the 

weight vector  . However, the correlation function of the 

noise that appears in  ̃  and  ̃  must be estimated. 

By pre-multiplying both sides of the first equality in (20) by 

 ̅ 
   

  , we have 

{
 ̅ 

   
       ̅ 

    ̅ 
   

       ̅ 
   

    

 ̅    ̅ 
    ̅ 

  
 

(21) 

Substituting  ̅ 
   in the first equation by its expression given 

in the second one, one has: 

 ̅ 
    ̅ 

   
       ̅ 

   
      ̅   ̅ 

   
       (22) 

The above equation can be rewritten in the following way: 

 ( )    ̅   ̅ 
   

      (23) 

where   is a     vector storing the correlation values of 

the MA process for the first lags, namely: 

   [             ]   (24) 

and  ( ) is          matrix defined as follows: 

 ( )    ( )   ̅ 
   

    ( )   ̅ 
   

      (25) 

where: 

  ( )   [               
          

         
   

 ] 

  ( )  [    
 

 (    
   

     
    

)     (    
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   [
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  [

                              
 

                                                  
]  

and,    and       
  are the following block diagonal matrices: 

[

     

 
             

], and [

       

 
         

] 

So, the unknown correlation vector    can be estimated as 

follows:  

     ( ̂)( ̅   ̅ 
   

    )  (26) 

where       is the Moore Penrose pseudo-inverse matrix of 

     and  ̂ is an estimate of  . 

The proposed improved least squares (ILS) algorithm for 

TVAR estimation can be summarized as follows: 

1. Compute  ̃  and  ̃ , and extract   ,  ̅ 
 ,   , and   ̅ . 

2. Calculate     using (15), and set the initial values to the 

biased estimates  ̂     .  

3. Estimate the  -step correlation vector   
  as follows: 

  
    ( ̂   )( ̅   ̅ 

   
    )  (27) 

and construct   
  and   

  from estimates   
 . 

4. Estimate the weights  ̂  from   
 ,   

  and the previous 

estimated weights  ̂   :  ̂        
  (   

  ̂      
 )  

5. Repeat steps 3 and 4 until 
‖ ̂     ̂ ‖

 ̂     where   is a 

small positive number.  

4. SIMULATION RESULTS 

In this section, our purpose is to test the performance of the 

proposed method in order to analyze its limits. 

Since the signal      is non-stationary, we suggest defining 

the signal-to-ratio         by        (
  
    

     
) where 

  
      [     ]  is the variance of the TVAR process 

    , which can be easily expressed by using (1), under the 

assumptions of local stationarity i.e.,  [          ]  
 [              ]     [              ] , 

for any   and          . 

In the following, two TVAR processes, of order     and 

    are considered where   
    and the basis functions 

are       {
   (          )            

                                   
              , 

where   is tuned by the practitioner and        . 

Two 1st-order MA noises are studied, which are character-

ized by the coefficients          and          
For all simulations, the number of data is 3000 and the num-

ber   is set to 0.001.  

1/ Results for      

Here,     and           . The true values of the 

weights to be estimated are set to         ,         ,  

 



Table 1. True and estimated values of weights and correlation function of the MA noise, with   100 runs (   ,    =     and then    ). 

                 NRMSE 

True values -0.5 -0.9 0.8 -0.1  

ILS  (      = -1.5) -0.55±0.048 -0.65±0.067 0.79±0.109 -0.15±0.053 0.22 

LS (15)  (      = -1.5) 0.12±0.022 -0.40±0.033 0.30±0.021 -0.44±0.031 0.76 

ILS  (      = 1.5) -0.59±0.068 -0.60±0.043 0.87±0.083 -0.05±0.049 0.30 

LS (15)  (      = 1.5) -0.55±0.022 -0.41±0.033 0.50±0.021 -0.07±0.031 0.44 

Table 2. True and estimated values of weights and correlation function of the MA noise, with   100 runs (    ,    =    ). 

                          

True values 0 -1.6 3.14 3.11 -1.15 -1.59  

ILS -0.48±0.71 -1.05±0.69 2.98±0.20 1.05±0.76 -0.81±0.73 -0.99±0.24  

LS (15) -0.53±0.88 -0.97±0.86 2.80±0.22 0.08±1.43 1.70±1.39 -0.82±0.41  

                                 NRMSE 

True values 0 -1.57 3.08 0.96 0 0  

ILS -0.26±0.78 -1.22±0.75 2.84±0.25 -0.26±0.68 1.19±0.66 0.27±0.18 0.65 

LS (15) -0.45±1.26 -0.96±1.21 2.58±0.38 -0.58±1.45 1.44±1.42 0.26±0.39 0.98 

 

  

Fig. 1. Evolution of the poles of the AR process in the z-plane (left) 

and NRMSE for various        (right). 

       , and         . The poles of the corresponding 

transfer functions        
 

  ∑            
   

 are given in 

the left hand side of Fig. 1. As   
  is equal to 1,       3.25 

and            or     and the SNR depends on   and 

varies between                    2.7dB and 

                        dB for both MA noises 

in this simulation. 

According to Table 1, the estimations based on our method 

are more reliable than the standard LS estimate deduced from 

(15). Indeed, the NRMSE
2
 is considerably reduced. 

Then, we have investigated the limits of the proposed meth-

od by analyzing its performance for various        and 

      . We provide the results for        , for 50 in-

dependent trials. The noise variance varies by modifying the 

variance   
  of the MA driving process whereas the other 

model parameters are still set to the same values. This hence 

leads to a        and        varying from -8.1dB to 

37dB and from -5dB to 40dB respectively. 

According to the right hand side of Fig. 1, the results ob-

tained with the proposed approach are still reliable even for 

low        (i.e. 5dB). 

                                                 
2
       

 

‖ ‖
√

 

 
∑ ‖ ̂   ‖

  
    where  ̂  denotes the estimates obtained 

during the  -th trial of the Monte Carlo simulation and   denotes the num-
ber of Monte Carlo runs. 

 
Fig. 2. Estimation of the pole modulus (left) and argument (right) 

for a 2nd-order TVAR process 

 
Fig. 3. Convergence features of the weight estimation     for 

       =2.7 (top) and -5.0 dB (bottom), 

(the break line indicates true value         ). 

According to Fig. 2, the proposed approach and the EKF 

provide estimates that almost vary along the true curves, 

unlike Kalman filtering directly used with noisy observations. 

Remark 2: When the MA-process variance becomes too 

large, i.e. when the        becomes low, the iterative 

estimation does not necessarily converge on most trials. Thus, 

Fig. 3 illustrates the convergence feature of the weight esti-

mation     for a small and a large variance of the MA noise, 

respectively. The successful-convergence rate is equal to 

100%, 90%, and 22% for a maximum SNR equal to 10dB, 

0dB, and -5dB respectively. Therefore, the risks of the itera-

tion failures increase as the     becomes small. 
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Fig. 4. Evolution of the poles of the AR process in the z-plane for 

    (left) and NRMSE for various SNR (right). 

 
Fig. 5. Estimation of a pole modulus (left) and argument (right) 

for a 4th order TVAR order 

2/ Results for      

Here,     and           .   
  is equal to 0.31 and 

      . Simulation results are summarized in Table 2, 

where the SNR varies between             dB and 

       15.0dB.  

The right hand side of Fig. 4 reports the NRMSE for various 

variance   
  and SNR such that        and        vary 

from 3.5dB to 38.5dB and from 5dB to 40dB respectively. 

The evolution in time of one estimated pole modulus and its 

argument are reported in Fig. 5. 

5. CONCLUSIONS 

This paper provides a method for estimating the TVAR pa-

rameters when the AR process is disturbed by a MA noise by 

using a variant of the improved least-squares (ILS) method, 

initially introduced by Zheng. According to the comparative 

study, in any case, the approach outperforms the standard LS 

approach, standard Kalman filter, and the extended Kalman 

filter. The convergence of the proposed iterative algorithm 

mainly depends on the SNR and the positions of the poles of 

the TVAR process 

Concerning the order of the TVAR model  , according to 

other simulations, we have confirmed that the ILS method is 

feasible for large   (       However, the NRMSE be-

comes large as the order   becomes large for the same SNR. 

Furthermore, the risks of the iteration failures increase as the 

size of the function basis   becomes large.  

Concerning the positions of the poles, we have confirmed 

that the ILS approach has high performance when the modu-

lus of all poles vary between 0.8 and 1.0. 
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