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ABSTRACT 

 

Bi-CoPaM ensemble clustering has the ability to mine a set 

of microarray datasets collectively to identify the subsets of 

genes consistently co-expressed in all of them. It also has the 

capability of considering the entire gene set without pre-

filtering as it implicitly filters out less interesting genes. 

While it showed success in revealing new insights into the 

biology of yeast, it has never been applied to bacteria. In this 

study, we apply Bi-CoPaM to five bacterial datasets, 

identifying two clusters of genes as the most consistently co-

expressed. Strikingly, their average profiles are consistently 

negatively correlated in most of the datasets. Thus, we 

hypothesise that they are regulated by a common biological 

machinery, and that their genes with unknown biological 

processes may be participating in the same processes in 

which most of their genes known to participate. Additionally, 

our results demonstrate the applicability of Bi-CoPaM to a 

wide range of species. 

 

Index Terms— Bi-CoPaM, microarray data analysis, 

gene clustering, Escherichia coli bacteria 

 

1. INTRODUCTION 

 

Recently, there has been an increasing trend in developing 

computational methods which collectively analyse multiple 

high-throughput biological datasets to obtain consensus 

results and conclusions [1, 2]. Gene expression analysis, 

including gene clustering, is not an exception [3, 4]. 

We have recently developed an unconventional paradigm 

of gene clustering through the proposal of the binarisation of 

consensus partition matrices (Bi-CoPaM) method [5]. In a 

tunable manner, this method allows any single gene to have 

any of the three eventualities, to be exclusively assigned to a 

single cluster, to be simultaneously assigned to multiple 

clusters, or not to be assigned to any of the clusters. 

Regarding the resulting clusters, they can therefore be 

complementary, wide and overlapping, or tight and focused 

with many genes left without being assigned to any of them 

[5]. 

Further enhancements took place with regard to the 

approach in which the method is applied. Rather than filtering 

the thousands of genes within the genome of a species prior 

to clustering, the Bi-CoPaM can be fed the entire genome 

while exploiting its capability of tightening clusters in order 

to implicitly filter the less interesting genes within the process 

of clustering [6]. 

In a separate study, the Bi-CoPaM was applied to yeast 

datasets, which revealed important findings about the poorly 

understood gene CMR1 [7]. Although it was stated that the 

Bi-CoPaM can be applied to other species in order to 

participate in gene discovery studies at a wider scope, that has 

not been realised yet. 

In this study, we apply the Bi-CoPaM to a set of five 

Escherichia coli (E. coli) bacterial gene expression 

microarray datasets generated under different biological 

conditions. Bacteria differ greatly from yeast in that the 

former belongs to the less developed prokaryotic branch of 

species while the later belongs to the more developed 

eukaryotic branch of species. To illustrate the huge gap 

between the two species, note that the eukaryotic branch also 

includes animals and plants. Thus bacteria and yeast are quite 

distant in their biological nature. We aim at verifying the 

biological validity of the Bi-CoPaM method when applied to 

bacterial datasets while trying to plot a number of testable 

biological hypotheses. 
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2. BI-COPAM 

 

Given a number of datasets and individual clustering methods 

(e.g. k-means [8], hierarchical clustering [9], etc.), the 

binarisation of consensus partition matrices (Bi-CoPaM) 

method is applied through the following four main steps [5]: 

 Partition generation: each individual clustering 

method is applied separately to each of the given 

datasets to generate a pool of partitions. The number 

of clusters should be fixed in all of those partitions. 

 Relabelling: due to the fact that clustering is 

unsupervised, there are no labels readily associated 

with the generated clusters. Thus, the clusters of each 

of the partitions are rearranged such that the ith cluster 

of all of the rearranged partitions are matched with 

each other. A min-min approach is considered for this 

step [6]. 

 Fuzzy consensus partition matrix (CoPaM) 

generation: The relabelled partition matrices are 

averaged in an element-by-element manner to 

produce a single fuzzy consensus partition matrix 

(CoPaM), in which the fuzzy membership u ∊ [0, 1] 

of any of the genes in any of the clusters represents 

the fraction of partitions which has assigned that 

particular gene to this particular cluster. 

 Binarisation: The fuzzy CoPaM is binarised to 

produce a binary consensus partition matrix. 

Six binarisation techniques were proposed in [5] and 

extended in [10], but we consider one of them in this study, 

namely the difference threshold binarisation (DTB) 

technique. In DTB, a gene is assigned to the cluster in which 

it has its maximum fuzzy membership value if, and only if, 

its membership value in the closest competitive cluster is less 

than that of the maximum by at least the value of the tuning 

parameter δ. The gene is otherwise left without being 

assigned to any of the clusters. 

The value of δ ranges between zero and unity, inclusively. 

When δ is zero, each gene is assigned to the cluster in which 

it has its maximum fuzzy membership value. Therefore, 

every gene will be assigned to a single cluster, and the 

generated clusters will be complementary. Slight overlaps 

may occur though, when a gene belongs to more than one top 

cluster exactly with the same fuzzy membership value. At the 

other extreme, when δ is unity, a gene is assigned to a cluster 

if, and only if, all of the partitions have assigned to it 

consensually. In this case, the tightest clusters are obtained, 

and many of them might be totally empty. Taken together, 

increasing the value of δ tightens the clusters and leaves more 

genes unassigned. 

 

3. DATASETS & EXPERIMENTAL SETUP 

 

Table 1 lists the five E. coli bacterial datasets used in this 

study. The first column shows the unique identifiers with 

which we will hereinafter refer to the datasets. The second 

column shows the unique National Centre for Biotechnology 

Information (NCBI) accession number with which one can 

access those datasets in the NCBI online data depository. The 

third to the fifth columns show the number of samples (N), a 

brief description, and a reference for each of the datasets, 

respectively. 

All of the five datasets were generated by using the same 

microarray chip, namely the Affymetrix E. coli Genome 2.0 

Array, and include the expression profiles for 3,956 genes 

constituting the genome of E. coli. 

We have applied the Bi-CoPaM method to those five 

datasets while considering a K value (number of clusters) of 

three. The adopted individual clustering methods are k-means 

with the deterministic Kaufmann’s initialisation [8, 16], 

hierarchical clustering with Ward’s linkage [9, 17], and self-

organising maps (SOMs) with a bubble neighbourhood [18]. 

The δ values considered for the DTB binarisation technique 

range from zero to unity with a step size of 0.1. The objective 

is to identify the subsets of genes which are consistently co-

expressed in all of those different datasets. 

 

4. RESULTS 

 

The numbers of genes included in each of the three clusters, 

respectively labelled as C1, C2, and C3, at all of the 

considered δ values are listed in Table 2. It can be clearly seen 

in this Table that while increasing the δ value, the number of 

genes in the clusters decreases. Before giving the clusters 

their labels and listing them in Table 2, they had been ordered 

based on the number of genes they preserve at the tightest 

level when δ is equal to unity. 

ID Acc. No. N Description Ref. 

A GSE9923 10 Indole signalling at low temperatures [11] 

B GSE10159 9 Treatment with with cefsulodin and 

mecillinam 

[12] 

C GSE20374 3 Response to cofactor perturbations [13] 

D GSE34275 6 Growth in presence and absence of 

glycerol 

[14] 

E GSE37026 4 Treatment with colicin [15] 

Table 1. E. coli bacterial datasets 

δ 
C1 C2 C3 

Genes MSE Genes MSE Genes MSE 

0.0 2076 0.70 1735 0.72 460 0.74 

0.1 1520 0.66 1209 0.68 193 0.70 

0.2 1208 0.63 864 0.64 97 0.66 

0.3 885 0.59 599 0.59 33 0.60 

0.4 565 0.52 377 0.55 11 0.49 

0.5 378 0.48 234 0.49 2 0.04 

0.6 283 0.45 149 0.44 1 0.00 

0.7 120 0.32 57 0.35 1 0.00 

0.8 61 0.27 20 0.32 0 - 

0.9 21 0.25 3 0.19 0 - 

1.0 21 0.25 3 0.19 0 - 

Table 2. Number of genes and the mean squared error (MSE) 

average values for each of the three clusters generated by the Bi-

CoPaM method at all of the considered δ values. 



The third cluster loses all, or most, of its genes at a 

relatively low δ value. For example, at δ = 0.5, it includes 

only a couple of genes, which are totally lost when δ reaches 

the value of 0.8. On the other hand, C1 preserves a 

considerable amount of genes even when δ reaches unity. 

 

4.1. Mean squared error (MSE) analysis 

 

To examine the quality of the clusters at different δ values, 

we calculated average mean square error (MSE) values for 

each of the clusters at all of the δ values. The MSE metric 

measures the tightness of a cluster by giving it lower values 

when its genes’ profiles are better correlated. The 

mathematical formulation of this metric is shown in equation 

(1): 

 𝑀𝑆𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑘) =
1

𝑁∙𝑀𝑘
∑ ‖𝑥𝑖 − 𝑧𝑘‖

2
𝑥𝑖∈𝐶𝑘

. (1) 

where k is the number of the cluster being examined, N is the 

number of samples or time-points in the dataset, Mk is the 

number of genes in the cluster, Ck is the set of vectors {xi} 

representing the gene expression profiles for the genes 

included in the cluster (k), and zk is a vector representing the 

average expression profile for the genes in that cluster. 

The MSE values are listed alongside the numbers of genes 

in Table 2. As seen in this Table, the MSE values for the 

clusters at higher δ values are smaller, the observation which 

indicates that they are tighter clusters and correlates with 

what is expected. Moreover, the three clusters differ largely 

in terms of their MSE values at similarly sized cases. For 

instance, the clusters C1, C2, and C3, at the respective δ 

values of 0.7, 0.6, and 0.2, include the comparative numbers 

of genes of 120, 149, and 97 genes, respectively, while having 

the respective distant average MSE values of 0.32, 0.44, and 

0.66. This illustrates that the cluster C1 has higher quality 

than the other two clusters because it preserves larger 

numbers of genes while maintaining relatively smaller values 

of MSE. The cluster C2 is not far from C1, but the cluster C3 

is significantly distance from both C1 and C2. With this 

analysis, we can filter out the cluster C3 from our further 

analysis, and we choose the clusters C1 and C2 at δ = 0.7 for 

further analysis. 

 

4.2. Expression Profile Analysis 

 

Figure 1 shows the profiles of the genes included in the 

clusters C1 and C2 at δ = 0.7 in all of the five datasets A to 

E. The first and the third columns of the Figure show the 

profiles of the individual genes within those clusters while the 

second and the fourth columns show their average expression 

profiles. 

The most interesting observation in this Figure is that, in 

almost all of the datasets, the average profiles of the two 

clusters are reciprocal, i.e. highly negatively correlated. To 

evaluate this quantitatively, Pearson’s correlation was 

calculated between the average profiles of the clusters C1 and 

C2, and as control, the same was calculated for the average 

profiles of the cluster pairs C1 – C3 and C2 – C3. The results 

are shown in Figure 2. 

It is clearly shown in Figure 2 that there is a strong 

negative correlation (ρ < -0.7) between the clusters C2 and 

C3 in four out of five datasets, namely by excluding the 

dataset (D). On the other hand, there is no similar pattern 

between any of the other two pairs of clusters. This indicates 

that those two clusters might be oppositely co-regulated as 

well as being negatively correlated. In other words, they may 

be controlled by a common biological machinery, which 

while activating the subset of genes in C1, represses the 

subset of genes in C2, and vice versa. 

Figure 1. Individual profiles (first and third columns) and average profiles (second and fourth columns) of the genes included in the 

clusters C1 and C2 at δ = 0.7 in all of the five datasets. The five rows in this grid of sub-plots represent the five datasets A to E. 
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4.3. Biological Analysis 

 

We have carried out the commonly used gene ontology (GO) 

term analysis to investigate the biological relevance of the 

clusters C1 and C2. GO terms are terms which represent 

biological processes, molecular functions, or cellular 

components. While new discoveries are unveiled by 

researchers regarding genes, these discoveries are encoded by 

the Gene Ontology Consortium in the form of associating the 

considered genes with their corresponding processes, 

functions, and components. GO term enrichment analysis 

mines a subset of genes for those GO terms with which 

significant numbers of content genes are associated. 

We have mined the clusters C1 and C2 at δ = 0.7 for the 

enriched biological processes GO terms. C1 is highly 

enriched with processes related to protein synthesis as well as 

the cell-cycle, such as “translation” (p-value 6.7×10-4), 

“tRNA processing” (p-value 3.4×10-5), “DNA repair” (p-

value 1.2×10-3), and “methylation” (p-value 2.0×10-3). Note 

that protein synthesis processes, such as ribosome biogenesis, 

have also been found as the most consistently co-expressed 

subset of genes in yeast [6, 19]. In contrast, C2 is highly 

enriched with processes related to transport and carbohydrate 

metabolism, such as “transport” (p-value 1.6×10-3), 

“carbohydrate transport” (p-value 3.2×10-8), “maltose 

transport” (p-value 2.8×10-5), “carbohydrate metabolic 

process” (p-value 1.2×10-1, and p-value 1.1×10-4 at δ = 0.6), 

and “L-ascorbic acid catabolic process” (p-value 1.2×10-3). 

Another interesting aspect is those genes with unknown 

biological processes. At δ = 0.7, C1 includes 28 genes with 

unknown processes out of 120 while C2 includes 9 such 

genes out of 57. In light of the aforementioned biological 

processes known to be highly enriched in these clusters, the 

unknown genes can be hypothesised to have similar processes 

as they are consistently co-expressed (correlated) with them 

across five different datasets generated under different 

conditions. This plots such hypotheses about those unknown 

genes which guide future work in gene discovery. 

 

5. CONCLUSIONS 

 

The Bi-CoPaM method has the ability to process multiple 

genome-wide datasets, i.e. multiple datasets with the entire 

set of genes without filtering, collectively and 

comprehensively. Filtering of less interesting genes is done 

implicitly within the course of Bi-CoPaM’s application 

through two main means, tightening clusters by increasing 

the value of the tuning parameter δ, and filtering out clusters 

with lower quality from the consequent steps of analysis. By 

the application of Bi-CoPaM to five genome-wide E. coli 

bacterial datasets generated under different biological 

conditions, we have identified two major clusters for being 

consistently co-expressed (correlated) across different 

conditions. The first cluster includes genes which participate 

in protein synthesis and cell-cycle while the second cluster 

includes genes which participate in transport and 

carbohydrate metabolism. One hypothesis suggests that the 

few genes included in those two clusters with unknown 

biological processes may be participating in the same 

processes in which the other genes in those clusters 

participate in. Another important hypothesis is based on the 

striking observation that those two clusters are consistently 

negatively correlated with other across the different datasets, 

and therefore may be regulated by a common biological 

regulatory machinery which while activating one of them 

represses the other. 
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