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ABSTRACT

This paper proposes a set of piecewise Toeplitz matrices as

the linear mapping/sensing operator A : Rn1×n2 → RM

for recovering low rank matrices from few measurements.

We prove that such operators efficiently encode the in-

formation so there exists a unique reconstruction matrix

under mild assumptions. This work provides a significant

extension of the compressed sensing and rank minimiza-

tion theory, and it achieves a tradeoff between reducing the

memory required for storing the sampling operator from

O(n1n2M) to O(max(n1, n2)M) but at the expense of

increasing the number of measurements by r. Simulation

results show that the proposed operator can recover low

rank matrices efficiently with a reconstruction performance

close to the cases of using random unstructured operators.
Index Terms—Rank minimization, Toeplitz matrix, com-

pressed sensing, coherence

I. INTRODUCTION

As a dual of the compressed sensing (CS) problem [1],

the matrix rank minimization problem has been extensively

studied in recent years [2]–[4]. This problem arises in many

fields such as system identification [4], computer vision [3]

and quantum state tomography [5], where notions of order,

dimensionality or complexity can be expressed in terms of

the rank of a matrix. Let X be an n1 × n2 matrix of low

rank rank r, the sampling operation can be expressed as

y = A(X) = [〈A1,X〉, · · · , 〈AM ,X〉]
T
= Avec(X),

(1)

where y is a vector of measurements, A : Rn1×n2 → RM

is a linear transformation, A denotes the transform in

matrix format in which A ∈ RM×(n1·n2) (without loss

of generality we assume that n1 < n2); and 〈Aj ,X〉 =
Tr(AT

j X), j ∈ {1, · · ·M}, (vec) is the operator that

vectorizes the matrix X by concatenating the columns as

a long vertical vector x ∈ RN , N = n1n2.

In compressed sensing, besides conventional Gaus-

sian/Bernoulli random sensing approaches, many struc-

tured/deterministic sensing matrices have been proven suit-

able for recovery of compressible signals. The interest in

using structured sensing matrices in CS stems from the

application needs, mainly due to their low complexity in

computation and memory, as well as hardware implemen-

tation [6]–[8].

While we note several attempts in CS to use struc-

tured sensing matrices, contributions to low rank matrix

reconstruction are more scarce. There are some efforts

such as in [2], [9], [10]. An existing key condition of

A is the so called rank restricted isometry property (r-

RIP) [2]. However, examining the r-RIP of a given op-

erator A is NP-hard. In this paper, we show that if the

A consists of independent identically distributed (i.i.d.)

random variables forming a piecewise Toeplitz structure, it

is feasible to recover the objective low rank matrix from its

measurements uniquely. Instead of studying its r-RIP, we

convert the uniqueness problem of rank minimization into a

compressed sensing problem, and analyze the performance

bounds of proposed matrices by using the tools from

structured sensing matrix analysis in CS. The extension

is not trivial, since the vectorized low rank matrix is no

longer sparse. By utilizing such technique we may reduce

the memory required to store the sampling operator from

O(n1n2M) to O(M max(n1, n2)) at the expense of a few

measurements under mild assumptions.

The rest of the paper is organized as follows. In Section

II we formulate the problem and introduce the proposed

piecewise Toeplitz matrices. The main result and the cor-

responding proof are presented in Section III. Simulations

are given in Section IV and finally Section V addresses

the conclusion.

I-A. Relations to Previous Works

There are existing random or structured matrices for the

rank minimization problem, such as [2], [9], [10]. The

idea of this paper different from the previous work is to

use Toeplitz structured operators inspired from structured

sensing matrices in CS [6], [11]. After decomposing the

low rank matrix, we analyze the uniqueness of recover-

ing a block sparse vector (as defined in [12]). In [11]

the authors also adopted the Gershgorin circle theorem

to bound the eigenvalues of Toeplitz matrices, while in

this paper the different coherence expression makes the

analysis much more complicated. The idea of decomposing

low rank matrix by its columns also relates to CUR matrix

decomposition and the Nystrom method [13]. In contrast,

to these previous approaches, the core problem here is the

unique reconstruction rather than the decomposition, so the

coherence and RIP analyses are adopted.



II. PIECEWISE TOEPLITZ MATRIX-BASED

SENSING

II-A. Problem Formulation

To exploit the low rank property, we suppose that the

low rank matrix X = [x1,x2, · · · ,xn2
] has rank r so that

r of its columns xi can represent the remaining (n2 −
r) columns explicitly by their linear combination. Denote

the selected r columns as x⋄, x⋄ ⊂ {x1,x2, · · · ,xn2
},

⋄ ⊂ {1, 2, · · · , n}, card(⋄) = r; and the remaining (n2 −
r) columns as x∗, ∗ ⊂ {1, · · · , n2}, card(∗) = n2 − r.

We call them primary columns and secondary columns,

respectively. Then the (n2 − r) secondary columns can be

represented as

xi =

r∑

j=1

αijx⋄j
, (2)

i ∈ {∗1, ∗2, · · · , ∗n2−r}. Its matrix multiplication form is
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(3)

where ⊗ denotes the Kronecker product. Normally r ≪
n2, i.e. α is a tall matrix. Thus x = vec(X) can also be

decomposed in a block sparse manner as

x = Ψ · f (4)

where Ψ is a sparse matrix with block diagonal ma-

trices αijIn1
or In1

of size n1 × n1, f is a block

r-sparse vector (adopting the definition in [12]) f =
[
0, · · · ,xT

⋄1
,0, · · · ,xT

⋄r
, · · ·

]T
. Then (1) can be written as:

y = A(X) = Ax = AΨf = Θf , (5)

where Θ = AΨ. This block sparse problem has been

studied by analyzing the block-restricted isometry constant

[12]. However, here the matrix Θ is formed by the multipli-

cation of A and an unknown structured sparsifying matrix

Ψ in (4). And obviously this Ψ is neither unitary, nor

can be constructed delicately from complete bases. It is an

unknown block diagonal sparse matrix determined by the

low rank matrix X. The same low rank matrix may even

lead to multiple Ψ and f . Thus the conventional theory of

block CS may encounter difficulties for such a problem.

II-B. Piecewise Toeplitz Matrices

Definition 1 (Piecewise Toeplitz): A set of matrices

{A1,A2, · · · ,AM} of size n1 × n2 are defined as piece-

wise Toeplitz matrices if

a1 = vec(A1)
T = [aT11, a

T
12, · · · , a

T
1n2

],

...

aM = vec(AM )T = [aTM1, a
T
M2, · · · , a

T
Mn2

],

(6)

where aij denotes the jth column of the matrix Ai, and

their piecewise concatenation matrices

A[1] =






aT11
...
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


 · · · A[n2] =




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


 (7)

are all Toeplitz.

Proposition 1: For the measurement process y(j) =
〈Aj ,X〉, j ∈ {1, · · · ,M}, and a matrix X of size n1×n2

and rank r, (1) is equivalent to y = Θf , where f is a block

r-sparse vector, and Θ of size M×(n1n2) has the structure

Θ =
[
Θ[1] Θ[2] · · · Θ[i] · · · Θ[n]

]
in which

Θ[i] =

{
A[i] +

∑

∗ α∗iA[∗] if i ∈ {⋄}
0 if i /∈ {⋄}

(8)

for all i ∈ {1, · · · , n2}. {A[i]} are matrices derived

from {Aj} by concatenating their columns piecewisely

as in (7). {⋄}, {∗} represent the sets of primary columns

and secondary columns indexes, respectively. card(⋄) =
r, card(∗) = n2 − r. Θ[i] are also Toeplitz when i ∈ {⋄}.

Proof: Because X has rank r,

y = [A[1] A[2] · · · A[n]]Ψf = Θf . (9)

Then it is straightforward to verify the expression in Prop.

1. Because A[i] are Toeplitz, Θ[i] must be Toeplitz as well

when i ∈ {⋄}.

Remark: Since the decomposition x = Ψf is not

unique, Θ have different expressions corresponding to

various f , which distinguishes (9) from CS with multiple

solutions f . Fortunately what we need to recover is not f

but x. Multiple f may lead to a unique solution x.

III. MAIN RESULT AND PROOF

Proposition 2 (Unique Recovery): The reconstruction

of matrix X with size n1 × n2 and rank r in (5) has a

unique solution X̂ if Θf 6= 0 holds for every f 6= 0 in (5)

which is block 2r-sparse, where Θ has the structure in (8).

Proof: Assume that there is a new solution X∗ to (5)

with rank(X∗) ≤ r, X∗ 6= X̂, which means that

x̂ = Ψ̂f̂ ,x∗ = Ψ∗f∗, x̂ 6= x∗. (10)

Let X′ = X∗ − X̂, where X′ is a nonzero matrix of rank

at most 2r. Then there must exist an f ′ that is block 2r-

sparse such that AΨ′f ′ = 0, where Ψ′f ′ = X′, which

contradicts the assumption. Please note that f ′ 6= f∗ − f̂ if

Ψ∗ 6= Ψ̂. The result is arrived from the above analyses.

Remark: Prop. 2 is an extension of the uniqueness guar-

antee from a sparse vector in CS to a low rank matrix.

Θ depends on the unknown matrix X, f is not unique.

However, because X′ has rank at most 2r, it must be

decomposed into Ψ′ and a 2r-sparse vector f ′, which is

in contradiction to the assumption.



Proposition 3 (ǫ Bound): Consider Θ = AΨ with the

structure in (8). Denote by Θ[⋄] the submatrix formed by

retaining the column blocks of Θ indexed by ⋄. If the

normalized Gram matrix G of every Θ[⋄] has bound

|gii − 1| ≤ ǫ1,

Ri =
∑

j=1
j 6=i

|gij | ≤ ǫ2, (11)

with some positive values 0 < ǫ1, ǫ2 < 1, then the

eigenvalues of G(Θ[⋄]) are bounded by (1 − ǫ, 1 + ǫ),
ǫ = ǫ1+ǫ2, and (5) has the unique block 2r-sparse solution

f̂ when ǫ is bounded by the RIP constant.

Proof: The proof is based on the Gershgorin circle

theorem [14], and can be derived from the RIP and Prop.

2.

Now we give the main result of this paper. The details

of Condition 1 and Assumption 1 are provided in the

Appendix.

Theorem 1 (Main Result): Consider the measurements

y(j) = 〈Aj ,X〉, j ∈ {1, · · · ,M}. Let Aj be piecewise

random Toeplitz matrices whose entries satisfy Condition

1. X is a rank r matrix satisfying Assumption 1, when

r2 < O(n1), M ≥ O
(
r2(n1 + n2) log(n1n2)

)
, then there

exists a constant c > 0 such that for any fixed X has a

unique solution X̂ = X with probability exceeding 1 −

exp
(

− cM
r2n2

1

)

as n2 = n2
1.

Proof: The proof exploits inner products of any

two columns of Θ in order to bound the eigenvalues.

Denote the qth column in matrix A[p] as A[p, q], p ∈
{1, · · · , n2}, q ∈ {1, · · · , n1}. For the entries in one row of

the Gram matrix G, there are four circumstances of non-

zero θ[p1, q1]
T θ[p2, q2]: (1) p1 = p2, q1 = q2; (2) p1 6=

p2, q1 = q2; (3)p1 = p2, q1 6= q2; (4) p1 6= p2, q1 6= q2. We

will analyze them case by case.

(1) When p1 = p2, q1 = q2, they are the diagonal

entries of the Gram matrix. Without loss of generality, we

calculate θT⋄iq
θ⋄iq, i ∈ {1, · · · , r}, q ∈ {1, · · · , n1}, which

implies p1 = ⋄i, q1 = q2 = q. Following the expressions

in Prop. 1, the ((⋄i − 1) · n1 + q)th column of Θ can be

calculated is

θ[⋄i, q] = A[⋄i, q] +
∑

∗

α∗⋄i
A[∗, q]. (12)

Suppose |θ[⋄i, q](k)| ≤ a where a is a positive bound.

There is some positive value γi that E(θ[⋄i, q]
2(k)) =

γ2
i σ

2 for every k ∈ {1, · · · ,M}, σ2 = 1/M . By exploiting

Hoeffding’s inequality we have

Pr
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∣
∣
∣
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M∑
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2(k)− γ2

i σ
2M

∣
∣
∣
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≥ t0

}

≤ 2 exp
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−
2t20
Ma4

)

.

(13)

(2) When p1 6= p2, q1 = q2, they represent two columns

in different block Θ[p1],Θ[p2] but have relatively the same

internal positions. Let p1 = ⋄i, p2 = ⋄j, q1 = q2 = q, the

aM

a1

...
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· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

A[1] A[⋄i] A[⋄j ] A[n2]

q1 q2

...

� �

Fig. 1. The schematic diagram of matrix A. ak,A[i] are defined in
Deft. 1. q1 and q2 are internal column indexes. The two entries with
black squares are denoted as A[⋄i, q1](k),A[⋄j , q2](k), respectively.

two columns θ[⋄i, q], θ[⋄j , q] = A[⋄j , q] can be expressed

as

θ[⋄i, q] = A[⋄i, q] +
∑

∗

α∗⋄i
A[∗, q]

θ[⋄j , q] = A[⋄j , q] +
∑

∗

α∗⋄j
A[∗, q].

(14)

Because all entries in A are i.i.d. in different blocks,

E(θ[⋄i, q](k) · θ[⋄j , q](k))

= E

(
∑

∗

α∗⋄i
A[∗, q](k)

∑

∗

α∗⋄j
A[∗, q](k)

)

=
∑

∗

α∗⋄i
α∗⋄j

· σ2

(15)

Although θ[⋄i, q](k), θ[⋄j , q](k) are dependent due to the

mutual combination terms, we still can use Hoeffding’s

inequality to bound the summation, because for different

k, θ[⋄i, q](k)·θ[⋄j , q](k) are i.i.d.. Let κij =
∑

∗ α∗⋄i
α∗⋄j

,

then there exists some positive t1 such that

Pr
{∣
∣θ[⋄i, q]

T θ[⋄j , q]− κijσ
2M
∣
∣ ≥ t1

}
≤ 2 exp

(

−
t21

2Ma4

)

.

(16)

(3) When p1 = p2, q1 6= q2, the two columns are in

the same block p1 = p2 = ⋄i, i ∈ {1, · · · r} with different

internal index q1, q2:

θ[⋄i, q1] = A[⋄i, q1] +
∑

∗

α∗⋄i
A[∗, q1]

θ[⋄i, q2] = A[⋄i, q2] +
∑

∗

α∗⋄i
A[∗, q2].

(17)

Here a natural problem comes out: for these two columns,

they are not independent any more due to the Toeplitz

structure. Here we use “divide and conquer” technique that

separates the sum into two groups that have no mutual

terms. For instance, if q2 > q1, q2 − q1 = d, the sum can



be divided as

θ[⋄i, q1]
T θ[⋄i, q2] =

d∑

k=1

θ[⋄i, q1](k)θ[⋄i, q2](k + d) + · · ·

︸ ︷︷ ︸

first group

+
2d∑

k=d+1

θ[⋄i, q1](k)θ[⋄i, q2](k + d) + · · ·

︸ ︷︷ ︸

second group

,

(18)

and it is always possible to find a partition that divides

θ[⋄i, q1]
T θ[⋄i, q2] into two parts as sums with size {M

2 , M2 }
for even M and {M−1

2 , M+1
2 } for odd M . Thus for some

positive value t2,

Pr
{∣
∣θ[⋄i, q1]

T θ[⋄i, q2]
∣
∣ ≥ t2

}
≤ 4 exp

(

−
t22

8Ma4

)

.

(19)

(4) When p1 6= p2, q1 6= q2, similar to case (3), we

divide θT⋄iq1
θ⋄jq2 into 2 parts without mutual terms, giving

Pr
{∣
∣θ[⋄i, q1]

T θ[⋄j , q2]
∣
∣ ≥ t3

}
≤ 4 exp

(

−
t23

8Ma4

)

.

(20)

Finally, we normalize the Gram matrix and summarize

the diagonal elements and off-diagonal elements. Assume

that X satisfies the statistical low rank property defined

in the Def. 2 (see Appendix). Suppose a =
√

c0/Mγm,

γm = max(γi). Let ǫ21 = ǫ′21 +
κij

γ2 , ǫ
′
21 = t1

γ2 , γ = E(γi),

and let t2 = γ2ǫ22, t3 = γ2ǫ23, ǫ1 = ǫ2m = 1
4ǫ, ǫ2 =

∑

m ǫ2m,m = {1, 2, 3}. After tedious calculation of

bounding bias factor γ2
i and κij , we obtain the normalized

result by summarizing the four cases above and adopting

the Gershgorin theorem

Pr







n1n2⋃

i=1

{

rn1∑

j 6=i

|gij | ≥ ǫ2}






≤ 4n2

1n
2
2 exp

(

−
Mǫ2

128c20r
2n2

1

)

.

(21)

Hence there must exist a constant 0 < c < ǫ2

128c2
0

that

Pr {Not Unique Recovery} ≤ exp

(

−
cM

r2n2
1

)

(22)

whenever

M ≥

(
384c20

ǫ2 − 128cc20

)

r2(n1 + n2) log(n1n2), (23)

as r2 < O(n1), n2 = n2
1, n2 → ∞ then Pr → 0. Use Prop.

2,3 to derive the last step, which completes the proof.

Remark: 1) For Gaussian matrices with i.i.d. entries,

the measurements for the recovery of a low rank matrix

should be at least M ∼ O (r(n1 + n2) log(n1n2)) [2]. In

our case, the measurement price is the extra factor r.

2) For random Gaussian matrices, one needs O(n1n2M)
memory to store the operator. By using the piecewise

Toeplitz structure, we are able to reduce the memory

requirement to O ((M + n1)n2) as n1 < n2 < M .

3) The proof holds when r2 < O(n1), n2 = n2
1 in order

to avoid the situation that M ≥ n1n2. In practice it is

feasible to apply A to the case when n1, n2 are close. Our

simulations verify this conjecture numerically.

IV. SIMULATIONS

Extensive simulations have been carried out to compare

the reconstruction performances of random and proposed

operators. Here we present some results.

We utilize 3 different algorithms, including a) cvx

toolbox to minimize the nuclear norm [15]; b) Alternating

Least-Squares (ALS) algorithm [16] c) Directional-ALS al-

gorithm [17], to compare the reconstruction results, respec-

tively. For each algorithm, we recover a 50×50 random low

rank matrix using different A such as Gaussian/Bernoulli

operators, 3-valued operators [2] and finally random piece-

wise Toeplitz operators with truncated Gaussian entries.

Fig. 1 depicts a comparison of reconstruction errors with

increasing rank r at sampling rate ρ = M/(n1n2) = 0.3.

Each point is recorded as an average of 200 trials. From

these curves one can observe that the performance of the

proposed operator is close to that of random matrices,

which are typically considered as the optimal universal

operators. In addition, the proposed operators may be

equipped with fast reconstruction algorithms potentially by

exploiting the Toeplitz structure like in CS [7].

V. CONCLUSION

This paper proposes piecewise Toeplitz matrices as

structured linear operators in the matrix minimization prob-

lem, and proves that it is feasible to recover the low rank

matrix uniquely when the number of measurements ex-

ceeds O(r2(n1 + n2) log(n1n2)) under mild assumptions.

Experimental results show that the proposed operators

compare favorably with existing random operators.

VI. APPENDIX

Condition 1 (Aj)

Aj , j ∈ {1, . . . ,M} is an n1 × n2 matrix whose entries

are bounded i.i.d. 0-mean 1/M -variance random vari-

ables satisfying |Aj(p, q)| ≤
√

c0/M for some c0 >
1, p ∈ {1, · · · , n1}, q ∈ {1, · · · , n2}; in addition,

{A1, · · · ,AM} are a set of piecewise Toeplitz matrices

defined in Sec. II-B.

Assumption 1 (α)

α is the parameter matrix of r-rank X defined in (3). We

assume that α∗p⋄q
, p ∈ {1, · · · , n − r}, q ∈ {1, · · · , r}

satisfy the statistical low rank property defined below.

Definition 2 (Statistical Low Rank Property): A

r-rank matrix X has the statistical low rank property if

the αij in (3) are i.i.d. random variables with zero mean

and variance σ2
α.

In the proof of the main result we set σ2
α = 1/r to keep

the variance of xi identical due to (3).
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Fig. 2. Simulation results (a) using cvx toolbox to minimize the nuclear
norm of X (b) using Alternating Least-Squares (ALS) algorithm (c) using
Directional-ALS algorithm.
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