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ABSTRACT
Machine-type communications are quite often of very low
data rate and of sporadic nature and therefore not well-suited
for nowadays high data rate cellular communication systems.
Since signaling overhead must be reasonable in relation to
message size, research towards joint activity and data esti-
mation was initiated. When the detection of sporadic multi-
user signals is modeled as a sparse vector recovery problem,
signaling concerning node activity can be avoided as it was
demonstrated in previous works.

In this paper we show how well-known K-Best detection
can be modified to approximately solve this finite alphabet
Compressed Sensing problem. We also demonstrate that
this approach is robust against parameter variations and even
works in cases where fewer measurements than unknown
sources are available.

Index Terms— K-Best algorithm, multi-user detection,
sparse signal processing, Compressed Sensing

1. INTRODUCTION

Machine-type communications (MTC) is one of the big
emerging fields for future communication systems. Nowa-
days high data rate systems such as LTE were designed for
human-based traffic without having MTC in mind [1]. Unlike
human-driven communications, MTC refers to traffic be-
tween two autonomous entities without human interaction. It
is quite often of very low data rate and of sporadic nature. As
the ratio of signaling to payload renders communication inef-
ficient when data packets are very small, signaling overhead
should be kept at a minimum level. Due to these properties
previous approaches for integrating MTC traffic into existing
communication systems have been unsuccessful, which calls
for novel techniques.

In an MTC uplink scenario where sensor nodes sporad-
ically transmit data to a central aggregation node, signaling
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concerning node activity can be avoided by facilitating joint
activity and data detection. This detection problem can be
cast as estimating a sparse multi-user signal, where inactive
nodes are modeled as transmitting zeros while active nodes
transmit symbols taken from a finite modulation alphabet [2].

Recent papers have approached this type of detection
problem by utilizing CS algorithms. For example, in [3, 4]
Orthogonal Matching Pursuit or Group OMP was used for
joint data and activity detection. However, the discrete nature
of the finite set of modulation symbols allows for the use of
non-linear tree search algorithms, first and foremost Sphere
Decoding (SD). In terms of symbol error rate (SER), SD
achieves the maximum a posteriori (MAP) performance [2,5],
albeit the algorithmic complexity can only be upper bounded
to be exponential with the problem size [6]. As a much sim-
pler alternative, Successive Interference Cancellation (SIC)
was investigated in [7]. The paper shows that the SER perfor-
mance reduces drastically whenever the system load changes
due to higher user activity, which increases the interference
and reduces the sparsity in the system. CS algorithms and
generalized SD even work for underdetermined systems,
where SIC fails to detect the sparse multi-user source signal.

K-Best detection can be interpreted as a trade-off between
SD and SIC with an adjustable parameter K which deter-
mines performance and complexity of the detector [8]. The
main advantage is that K-Best detection allows for a constant
throughput which is not the case for SD.

The goal of this paper is to incorporate the expertise of
previous works in this field and close the gap between theo-
retical analysis and practical implementation towards a robust
and flexible algorithm for joint activity and data detection.
We show that K-Best detection works with a reasonably low
K even for underdetermined systems: It can achieve good
symbol error rate performance with a complexity far less than
MAP detection and is robust against unpredictable changes of
user activity in the system.
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Fig. 1. Machine-to-machine uplink scenario involving N spo-
radically active sensor nodes.

2. SYSTEM MODEL

Fig. 1 shows the MTC multi-user uplink system assumed in
this work. A set of N nodes transmits data to a central ag-
gregation node for further processing, each node being only
sporadically active. In other words, just a random subset of
nodes transmits data at a specific time instance, as indicated.
We assume that the detector has probabilistic but not instan-
taneous knowledge about the activity pattern.

The detection model can be summarized by the canonical
I/O relationship in symbol clock

y = Tx + w , (1)

where y ∈ RM is the vector of M observations at some time
instance and T ∈ RM×N summarizes the medium access
and channels. In this work we assume randomly coded data
symbols which means that the transmit nodes precode data
symbols via zero-mean Gaussian sequences. This method is
very similar to CDMA and was proposed in [9] as medium
access for CS-based detection. Gaussian sequences facilitate
a better user separation compared to traditional pseudo-noise
sequences which also coincides with the notion of random
CS measurement matrices. We assume the superposition of
additive white Gaussian noise with zero mean and variance
σ2
n, symbolized by w. The transmission is of low data rate,

occupying only a narrow bandwidth, which justifies the as-
sumption of a frequency-flat fading channel.

The multi-user vector x contains the modulation symbols
from the transmit nodes and the nth entry corresponds to the
modulation symbol of node n. We employ a homogeneous
activity model parametrized by the activity probability pa, i.e.
each node transmits data with probability pa. Active nodes
transmit symbols of the modulation alphabet A and the other
nodes can be modeled as “transmitting” a zero symbol, since
they are inactive (cp. [2, 10]). The application of this model
makes Pr (xn = 0) = 1 − pa and Pr (xn ∈ A) = pa. If pa
is sufficiently small, the multi-user vector x is a sparse vector
containing a considerable number of zero symbols.

2.1. Sparsity-MAP Detector

The main idea is to detect the multi-user signal x ∈ AN
0 with

respect to the zero-augmented symbol alphabetA0 = A ∪ {0},
which can be interpreted as joint activity and data estimation.
The sparsity-aware MAP (S-MAP) optimization problem
associated with (1) is [2]

x̂ = arg min
x∈AN

0

‖y −Tx‖22 + λ‖x‖0 , (2)

where ‖ · ‖0 = #{i : xi 6= 0} is the `0-(pseudo) norm, i.e.
the total number of non-zero elements or the cardinality of the
support. The penalty term

λ = 2σ2
n log

(
1− pa
pa/|A|

)
(3)

reflects the a priori statistics of the data vector and scales with
the noise power σ2

n, as derived in [11]. Subsequently, λ is
used as a system-specific regularization parameter.

In the following we restrict ourselves to constant modu-
lus data, i.e. |xn| = 1, ∀xn ∈ A (cp. [10]). Hence, any
phase-shift keying modulation scheme may be chosen for A.
Further, we assume, without loss of generality, λ > 0 to sim-
plify evaluation. It can be derived from (3) that this second
restriction is fulfilled as long as pa ≤ |A|/(|A|+ 1) holds.

2.2. Underdetermined Systems

In the following we focus on scenarios where the number of
nodesN is greater than the spreading sequence lengthM , i.e.
we assume (1) to be underdetermined. With M < N , the
system is overloaded in the classical sense for better resource
efficiency. This relates the detection problem (2) to the theory
of Compressed Sensing, since the multi-user source signal x
is of sparse nature. In fact, (2) is the finite alphabet variant of
the unconstrained Lagrangian form of the convex quadratic
problem known as Basis Pursuit Denoising (BPDN),

x̂ = arg min
x
‖x‖1 s. t. ‖y −Tx‖2 < ε , (4)

where T may not be arbitrary, but must fulfill e. g. the re-
stricted isometry property (RIP) for some reconstruction
guarantees [12]. Note that the non-convex `0-norm is relaxed
to the convex `1-norm.

The available prior knowledge about the source vector x
can be utilized to regularize the underdetermined system of
equations in (2). For instance, the constant modulus assump-
tion allows us to substitute ‖x‖0 = ‖x‖1 = ‖x‖22, [10]. Now
we can include the regularization term into the least squares
metric and reformulate the minimization problem as

x̂ = arg min
x∈AN

0

‖y −Tx‖22 + ‖
√
λ · x‖22 (5)

= arg min
x∈AN

0

∥∥∥∥[ y
0N

]
−
[

T√
λ · IN

]
x

∥∥∥∥2
2

(6)

= arg min
x∈AN

0

‖ỹ − T̃x‖22 . (7)



1: function K-BEST( ŷ,R,A0,K )
2: for n← N, ..., 1 do
3: for k ← 1, ...,K do . K paths
4: Retrieve history of kth path

(
x̂n+1, ..., x̂N

)
k

5: for all x̂n ∈ A0 do
6: d` ←

∑N
i=n

∣∣∣ŷi −∑N
j=i rij x̂j

∣∣∣2
7: end for
8: end for
9: Sort all K · |A0| hypotheses by d

10: Select K paths with the least metrics
11: for k′ ← 1, ...,K do . K new paths
12: Store updated

(
x̂n, ..., x̂N

)
k′ of k′th path

13: end for
14: end for
15: return x̂
16: end function

Fig. 2. Simplified structure of the K-Best detection algorithm

Here, T̃ is the regularized (M+N)×N matrix containing the
prior knowledge about the source data λ as well as the channel
T. If λ > 0 holds, T̃ has full rank. However, solving (7) may
lead to numeric difficulties when λ approaches zero.

3. SPARSE K-BEST DETECTION

It has been shown in [13] that the reformulated minimization
problem (7) can be solved by tree search algorithms. The sys-
tem matrix T̃ has to be triangularized using some type of QR
decomposition. In this setup we use sorted QR decomposi-
tion (SQRD), which permutes the detection order such that
data of nodes with a high post-detection SNR are estimated
first [14,15]. The essential idea of SQRD is to decompose the
system matrix such that T̃ = QRΘ, with Θ being a permuta-
tion matrix, which determines the ordering of the subsequent
detection. With SQRD, (7) becomes

x̂ = arg min
x∈AN

0

‖ŷ −RΘx‖22 , (8)

where ŷ = QT ỹ. R is an upper-triangular matrix of size
N ×N and has full rank as long as λ > 0 holds.

A Sphere Decoder solves (8) by a depth-first tree search
and is guaranteed to find the optimal solution, but there is
no guarantee that it terminates within polynomial time [6].
And another major disadvantage, besides its data-dependent
runtime, is the impossibility to parallelize computations effi-
ciently [16].

K-Best detection was proposed to improve on these as-
pects [8]. The algorithm sacrifices optimality but for large
values of the parameter K it is able to nearly achieve op-
timal performance. K-Best performs a breadth-first search,
and only retains those K hypotheses or search paths with
the smallest associated partial metric per iteration. Thus,

Table 1. Simulation Parameters

Number of Nodes/Users N = 20
Spreading Gain M (variable)
Channel Type AWGN
Modulation Type BPSK
Activity Probability pa = 0.2
Detection Model Zero-augmented alphabet

the algorithm operates on the search tree unidirectionally,
which leads to a constant runtime and makes parallelization
and pipelining of computations possible. This is favorable in
regard to a future implementation in hardware.

3.1. Complexity Analysis

Figure 2 outlines the structure of the K-Best algorithm. It de-
scends on the search tree iteratively, starting from N (the root
level of the tree) down to 1 (the level with leafs). Within this
loop, computations can basically be grouped into two parts.
First, the partial accumulated metrics of all child nodes have
to be evaluated for each of the K nodes, which in fact repre-
sent whole paths from the root of the tree down to the current
level. The partial metric d depends on the previous nodes of
that path (detected symbols x̂i, with i = n+ 1, ..., N ) and the
child node itself (xn). All partial metrics of the K · |A0| con-
sidered paths (“hypotheses”) are stored in a vector d of length
K · |A0| (index `). Second, the path hypotheses are sorted and
only those K paths with the least associated partial metric are
selected and stored for the next iteration.

The computational complexity of the K-Best algorithm is
therefore

CK-Best = O{N(K|A0|Cpm + Csort)} , (9)

with Cpm modeling the necessary operations for the par-
tial metric computations and Csort the complexity of the
sorting algorithm. In [7], the authors showed that Cpm =
O(N2) and, if Odd-Even Mergesort is employed, Csort =
O(K|A0| log2(K|A0|)). Consequently, K-Best detection is
of polynomial complexity in the number of users or transmit
sensor nodes, and scales merely loglinearly with the number
of search paths K. An improvement of the algorithm, called
K+-Best, further reduces the sorting complexity [17]. Since
only the smallest K partial path metrics are of interest for
subsequent processing, a completely sorted list of all metrics
is not required. Hence, the sorting can algorithmically be
simplified.

4. SIMULATION RESULTS

We investigate the performance of sparse K-Best detection on
an exemplary random coding uplink system [18]. Because the
columns of T contain random Gaussian sequences of length
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Fig. 3. Gross SER of zero-augmented BPSK and sparse K-
Best detection for an underdetermined scenario.

M for each of the N nodes, the dimension of T is M × N .
M also signifies the number of measurements. The remaining
simulation parameters are summarized in Table 1.

The first simulation setup uses a spreading length of
M = 10. This system is clearly underdetermined as the ratio
of observations to nodes is 1/2. Fig. 3 shows the gross sym-
bol error rate (GSER) over the zero-augmented BPSK symbol
alphabet A0 = {0,−1, 1}. The S-MAP performance is used
as a benchmark. It can be seen that K-Best detection with
very low K results in huge performance losses. Exemplary,
for K = 1 (SIC detection) reliable detection is infeasible.
Increasing K to higher values reduces the performance loss
significantly and with K = 16 the gap between S-MAP per-
formance and K-Best is small in the mid SNR range. At
higher SNR values, K-Best detection shows an error floor
which is due to the limited coverage of the search within
the search tree. In contrast to this, the S-MAP detector can
achieve better performance but only with non-deterministic
throughput and latency.

Setting K = 16 results in a computational complexity of
N ·K · |A0| = 960 processed hypotheses, which is still fea-
sible from a practical perspective. In comparison, the com-
putational complexity of S-MAP detection is not fixed and
can only be upper bounded to |A0|N ≈ 3.5 · 109 which is
prohibitively high. Moreover, the number of processed nodes
is known beforehand with K-Best detection, hence it allows
for the design of parallel hardware structures with constant
throughput and latency at the physical layer.

In the next setup we consider the robustness of K-Best
detection for different user activities with an exemplary tar-
get gross symbol error rate of GSER ≤ 10−2. Fig. 4 plots
the required SNR as a function of the parameter K. At low
activity probabilities, the required SNR is constant for a wide
range of K and an increase in K does not automatically lead
to performance gains. For higher user activities, the GSER
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Fig. 5. Performance of K-Best detection with a mismatch be-
tween true prior and postulated prior.

requirement can only be fulfilled with larger values of K, e.g.
at pa = 0.4 a K ≥ 16 is necessary. This is due to the error
floor behavior as discussed above.

Finally, we look at the robustness of K-Best detection in
scenarios where user activity is to some extend random, yield-
ing a mismatch between the actual activity rate and the activ-
ity probability assumed by the detector. In practice, the user
activity has to be estimated by the detector or the detector
has to be pre-adjusted according to some long term user ac-
tivity statistics. We model this mismatch ∆p as uniformly
random ∆p ∼ U (−∆p,max,∆p,max), i.e. the node activity
probability in the system is p = pa + ∆p, where pa is the
activity probability assumed at the detector and p is the true
activity probability of the transmit nodes. Fig. 5 shows the
performance of K-Best detection averaged over 10 000 model
realizations when the mismatch is up to 50 %. Then, the ac-



tivity probability assumed at the detector is pa = 0.2 and
∆p,max = pa/2 = 0.1. The results are similar to the results
of the first scenario without activity mismatch (Fig. 3) but a
performance loss is observable. However, we see that with
K = 8 we are still able to achieve a GSER < 10−2. There-
fore we can conclude that K-Best detection is to some extent
robust against parameter mismatch.

5. CONCLUSION

This work applies the K-Best algorithm to the joint activity
and data detection problem of sparse machine-type commu-
nications. The main advantage of this algorithm compared
to Sphere Decoding is its polynomial complexity and fixed
latency which is better suited for practical implementation.
We successfully showed that K-Best detection nearly achieves
maximum a posteriori performance with a reasonably small
search parameter K. At the cost of a slightly increased K,
it even allows for reliable detection in a Compressed Sensing
problem, i.e. in underdetermined multi-user systems where
the number of nodes in the system is higher than the available
resources. The detector is robust against activity parameter
mismatch and one choice of K may serve a wide SNR and pa
region.
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