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ABSTRACT

In this paper, we define a reversible tone mapping-operator
(TMO) for efficient compression of High Dynamic Range
(HDR) images using a Low Dynamic Range (LDR) encoder.
In our compression scheme, the HDR image is tone mapped
and encoded. The inverse tone curve is also encoded, so that
the decoder can reconstruct the HDR image from the LDR
version. Based on a statistical model of the encoder error and
assumptions on the rate of the encoded LDR image, we find a
closed form solution for the optimal tone curve with respect to
the rate and the mean square error (MSE) of the reconstructed
HDR image. It is shown that the proposed method gives su-
perior compression performance compared to existing tone
mapping operators.

Index Terms— High Dynamic Range (HDR), Tone Map-
ping, Companding, Gaussian Mixture Model (GMM), HEVC

1. INTRODUCTION

With the development of high dynamic range (HDR) imag-
ing, the compression of high bit depth images is a subject
of increasing interest. Standard images have a bit depth of
8 bits per color channel which is not sufficient to represent
with precision the range of luminance that the human eye
can perceive. Existing codecs are designed for relatively low
bit depth. For example, in the recent compression standard
HEVC [1], 8 to 10 bits input data is supported. Although ex-
tended versions can support higher bit depths, their use can be
restricted because of the increased implementation and com-
putational cost.

An alternative solution for HDR Compression is to apply
a tone mapping operator (TMO) on the image to reduce the
bit-depth. A low bit-depth encoder can then be used to com-
press the Low Dynamic Range (LDR) version of the image.
In this approach, side information needs to be encoded in or-
der to perform the inverse operation in the decoder. In [2],
[3] and [4], local TMOs which are not invertible, are used. In
this case, a second layer (e.g. residual or ratio image) is nec-
essary to reconstruct the HDR image from the decoded LDR
version.

Other attempts have been made at reducing the bit-depth

using a global TMO which consists in applying a non lin-
ear curve (called compressor), followed by uniform quantiza-
tion. Applying the inverse quantization and the inverse curve
(called expander) to the encoded and decoded LDR image ex-
pands the data to its original dynamic. This approach, often
referred to as companding is equivalent to non-uniform quan-
tization. As an example, the method in [5] iteratively opti-
mizes the parameters of the photographic TMO from [6] in
order to minimize the HDR reconstruction error. In [7], an ap-
proximation of the data distribution based on Gaussian mix-
ture models (GMM) is used to build compressor and expander
curves that approaches the results obtained by the Lloyd-Max
algorithm [8]. The latter algorithm is used, for example in
[9], in the context of HDR compression. It aims at finding
the optimal quantizer in terms of distortion, but does not con-
sider further encoding of the quantized image. In [10], Mai et
al. define a segment based curve that minimizes the data loss
caused by both the tone mapping and the encoder error. How-
ever, all these methods only focus on the distortion without
taking into account the rate of the encoded LDR image.

In our method, both rate and distortion are optimized.
The image is first tone mapped with a global invertible TMO
and then encoded with a complex encoder such as HEVC.
Based on a statistical model of the complete HDR compres-
sion scheme and assumptions on the rate of the encoded LDR
image, a closed form solution is found for the optimal tone
curve in the sense of rate distortion performance.

The rest of the paper is organized as follows. In section
2, the statistical model of the complete compression scheme
is presented and the problem to solve is posed. A closed form
solution is given in section 3. Then, the implementation of
our optimized tone mapping is described in section 4.

2. STATISTICAL MODEL

The problem consists in minimizing an objective function of
the form D + λ0.R, where D is the total distortion after re-
construction of the HDR image, R is the rate of the encoded
LDR image and λ0 is a Lagrangian multiplier that is adjusted
to obtain the optimal rate distortion performance.

In order to find a closed form solution to this problem,
we define a statistical model of our compression scheme. It



Fig. 1. Statistical model of the HDR compression scheme.

is illustrated in figure 1. In this model, we consider that the
pixels have real values (not necessarily integers). The input
image I has a probability density function (p.d.f.) p and its
minimum and maximum pixel values are respectively xmin

and xmax.
First, a function F that we call compressor function is

applied to the pixel values. F is defined on the interval
[xmin, xmax] such that F (xmin) = 0 and F (xmax) = 1.
We assume that F is a continuous and strictly monotonous
function. These properties ensure that F has an inverse func-
tion F−1 (called expander). After applying the function F ,
no data is lost since F is mathematically invertible. We call
IF the obtained image and pF its probability density func-
tion. Note that in a real implementation, the operation of tone
mapping with a curve is equivalent to applying a compressor
function such as F followed by uniform quantization.

Then a random variable (E) is added to each pixel value.
It models both the quantization error from the tone mapping
and the encoder error. Here we suppose that the distribution
of these random variables does not depend on the position or
the value of the pixel. It has zero mean, and a variance σ2.

Finally the expander F−1 is applied to reconstruct the im-
age Irec. Based on this model, the total mean square error
(MSE) of the reconstructed image can be estimated by its sta-
tistical expectation value Dexp. Given an image I and an en-
coder with fixed quality settings (e.g. fixed QP), we make the
assumption that the rate R of the encoded image is propor-
tional to the entropy of IF . Thus, minimizing Dexp+λ0.R is
equivalent to minimizing Dexp + λ.entropy(IF ), where λ is
another Lagrangian multiplier.

3. CLOSED FORM SOLUTION

Considering the mean square error as distortion metric, for
an input value x in the original image, the distortion D(x) is
given by :

D(x) = (x− F−1(F (x) + E))2

For small values of E , the following approximation can be
done :

D(x) ≈ (x− F−1(F (x)) + E · F−1′(F (x)))2

D(x) ≈ (E · F−1′(F (x)))2

D(x) ≈ E2

F ′(x)2

Thus, the expected distortion for the value x is :

E(D(x)) =
var(E)
F ′(x)2

=
σ2

F ′(x)2

And the total mean distortion is :

Dexp =

∫ xmax

xmin

p(x)·E(D(x)) dx =

∫ xmax

xmin

p(x)· σ2

F ′(x)2
dx

(1)
The entropy HF of the new probability density function

pF after applying the compressor function F is :

HF = −
∫ 1

0

pF (y) · log2(pF (y)) dy

HF = −
∫ 1

0

p(F−1(y)) · log2(p(F−1(y))) dy

Applying the substitution y = F (x), we obtain :

HF = −
∫ xmax

xmin

p(x) · log2(p(x)) · F ′(x) dx (2)

The expression of the total cost to minimize is then :

Cost =

∫ xmax

xmin

σ2 · p(x)
F ′(x)2

− λ · p(x) · log2(p(x)) · F ′(x) dx

(3)
Applying the Euler Lagrange equation gives the following

condition for the optimal function F ∗ with respect to the cost:

−2 · σ2 · p(x)
F ′(x)3

− λ · p(x) · log2(p(x)) = c,

F ∗′(x) = 3

√
−2 · σ2 · p(x)

c+ λ · p(x) · log2(p(x))



Thus,

F ∗(x) =

∫ x

xmin

3

√
−2 · σ2 · p(t)

c+ λ · p(t) · log2(p(t))
dt (4)

where c is a constant that must be adjusted so that
F (xmax) = 1.

However, we do not have an analytical solution to deter-
mine the value of c given λ and σ. Moreover, in practice, the
value of σ is not known. A model of the actual encoder used
would be necessary to find σ knowing the encoding parame-
ters (e.g. QP in HEVC, bitdepth of the LDR image).

To solve this problem, we define the function :

S(x, λi) =

∫ x

xmin

3

√
−2 · σ2

0 · p(t)
c0 + λi · p(t) · log2(p(t))

dt (5)

where c0 and σ0 are fixed arbitrarily (c0 < 0 and σ0 > 0).
It can be shown that for any positive value λ and σ

(σ 6= 0), there exists a value λi ∈ R such that :

∀x ∈ [xmin, xmax], F
∗(x) =

S(x, λi)

S(xmax, λi)
(6)

The consequence is that only one parameter λi is neces-
sary to adjust the shape of the tone curve. In practice, we have
to compute S(x, λi) by numerical integration and divide the
result by S(xmax, λi).

4. IMPLEMENTATION

In this article, we consider HDR images which are originally
in an integer format. In the case of floating point images rep-
resenting physical luminance values, a log or gamma encod-
ing must be applied first to obtain a perceptually uniform in-
teger image. The method is described for grayscale images.
For color images, the same procedure can be applied indepen-
dently to the chroma components.

4.1. Model of the probability density function

As shown in equation (4), the optimal tone mapping curve de-
pends on the probability density function p of the pixel values
in the original image. It can be easily estimated by comput-
ing the histogram of the image. However, since the decoder
must be able to compute the inverse tone mapping curve, a
better solution is to parameterize the histogram. This way,
only a few parameters must be encoded. For that purpose, a
Gaussian mixture model (GMM) of the p.d.f. is found using
the Expectation Maximization algorithm (EM) from [11]. A
GMM is a weighted sum of several Gaussians. The model pa-
rameters are the variance vj , the mean value µj and the weight
αj of each Gaussian j in the mixture model. The p.d.f. is thus
given by :

p(x) =

m∑
j=1

αj√
2π · vj

· exp
(
(x− µj)

2

2vj

)
(7)

where m is the number of Gaussians used in the model.

4.2. Computation of a Lookup Table
As it is explained in section 3, the compressor functionF ∗ can
be computed from equations (5) and (6) using arbitrary values
for σ0 and c0. In our implementation we take c0 = −1 and
σ0 = 1. Given a value of λi, we first compute the derivative
of the function S with respect to x:

∂S

∂x
(x, λi) =

3

√
−2 · p(x)

−1 + λi · p(x) · log2(p(x))
(8)

This function is tabulated at every integer value x from xmin

to xmax. Then, S(x, λi) can be approximated by numeri-
cal integration. The final tone curve is then computed as a
Lookup Table (LUT) from the following equation :

LUT (x) =

[
(2n − 1) · S(x, λi)

S(xmax, λi)

]
(9)

where n is the bitdepth of the LDR image and the brackets
represent the rounding operation. Note that the factor 2n − 1
does not affect the shape of the tone curve.

The tone mapping operation only consists in applying this
LUT to every pixel of the original HDR image. The image
obtained is then compressed with an LDR encoder. The pa-
rameters used for the construction of the tone mapping curve
(i.e. GMM parameters, xmin, xmax ) must also be encoded
without loss.

On the decoder side, the first step is to decode the LDR
image and the model parameters. Knowing the parameters,
the operations described in equations (7) and (8) can be per-
formed. From the tabulated function ∂S

∂x , the inverse of the in-
tegral is computed numerically to obtain an inverse tone map-
ping LUT. Finally, the inverse LUT is applied to the decoded
LDR image to reconstruct the HDR image.

4.3. Determination of the Lagrangian Multiplier
In the previous section, all the computations were based on
the parameter λi. This value must be optimized with re-
spect to the rate distortion performance of the complete HDR
compression scheme. For a given encoder (e.g. HEVC [1],
MPEG-4 H264/AVC [12], JPEG2000 [13]) and LDR bit-
depth, a law giving the optimal value λ∗i as a function of the
encoding quality parameter (e.g. QP parameter in HEVC)
must be determined. In our implementation, input images
with a bitdepth of 16 bits were tone mapped to n bits and en-
coded using HEVC at different QP. In that case, the following
law was found to give nearly optimal rate distortion results
for a large set of images:

λ∗i = 100 · 20.37·(QP+6·(n−8)) (10)

This model was found by encoding several images over a
large range of QP and λi values. For a given image, at each
QP, the encoding was performed several times by varying the
value of λi. Given a QP value, the Rate Distortion (RD) point
obtained with the optimal λi is on the convex hull of the set



(a) Péniches (b) Mongolfière (c) Cracheur (d) Marché

Fig. 2. Images from the NEVEx project used for our experiment

of all the RD points achievable. Thus, the optimal Lagrangian
multiplier λ∗i can be determined for each QP. The operation
was performed for several images and an exponential law was
fitted to the experimental data to derive the formula in equa-
tion (10).

5. EXPERIMENTAL RESULTS

For the experiments, only a luma channel was encoded. The
method can be generalized to color images by computing an
optimized tone curve for each channel separately. The HEVC
standard was used to encode the LDR image.

Since the input images are originally in the OpenEXR
half float RGB format [14], a logarithmic encoding was per-
formed to convert the RGB floating point data to 16 bit in-
tegers. We consider this encoding as perceptually uniform.
The obtained log RGB values were then converted to YUV
using the BT.709 primaries. Only the luma channel Y was
compressed with our method by tone mapping to 10 bits and
encoding with HEVC using the YUV 4:0:0 chroma format
and 10 bit input bitdepth. In all the tests, the number of gaus-
sian functions in the GMM was fixed to 6. We did not observe
significant changes in the probability density function by in-
creasing this value.

Our distortion measure is the PSNR computed on the re-
constructed 16 bit integer data obtained after applying the in-
verse curve to the 10 bit decoded image. Thus, the peak signal
value used in the PSNR formula is 65535. Note that this 16
bit data is proportionnal to the logarithm of luminance. There-
fore, we obtain a better visual indicator than a PSNR applied
directly to luminance values.

The results are shown for the input images Péniches,
Mongolfière, Cracheur and Marché in figure 2. These images
are taken from sequences produced by Technicolor within the
framework of the french collaborative project NEVEx.

Our method was compared to the distortion optimized
tone mapping developed by Mai et al. [10]. In our imple-
mentation their curve is applied directly on the 16 bit integer
data. Therefore, their logarithm function is not applied again
and the histogram bin size was chosen to have 250 segments.

The resulting rate distortion curves are shown in figure 3.
The curves were generated by varying the QP value from -12
to 32 in the HEVC encoder configuration.

Note that when we take λi = 0, our method is very close
to that of Mai et al. The main difference relies on the estima-
tion of the probability density function. This is in accordance

with the fact that only distortion is taken into account in [10].
This can be observed in the experimental results. For low QP
values (and thus low λi), the results of both methods are close.
The bit rate in this case is very high (from 6 to 8 bits per pixel
for the tested images encoded at 10 bits). For lower bit rates,
our method gives better results thanks to the rate distortion
optimization technique.

Table 1 shows the bit rate savings obtained in comparison
to Mai et al.’s method using Bjontegaard metric [15] for two
different QP ranges. Low bitrates are computed for QP from
12 to 32 and high bit rates are computed for QP from -4 to 4.

The image Marché gives the lowest gains. This can be
explained by the fact that the histogram of this image is more
”uniform” than those of the other images. In this case, the
tone curves obtained by both methods are similar.

(a) (b)

(c) (d)
Fig. 3. Rate distortion results for four HDR images

Image Low bitrates High bitrates
Péniches 36.7% 5.4%
Mongolfière 21.2% 5.2%
Cracheur 13.9% 4.0%
Marché 6.9% 1.9%

Table 1. Bitrate savings compared to Mai et al. [10]. QP from 12 to
32 are used for low bitrates and QP -4 to 4 are used for high bitrates.



In comparison to [10], however, our method has an in-
creased complexity. On average, for the tested images, the
execution time of our tone mapping represents 56% of the
total encoding time (i.e. tone mapping followed by HEVC
encoding), but this figure drops to 1.3% in [10]. This is due
to the Expectation Maximization algorithm used in our im-
plementation for estimating the probability density function.
Since, this step is only performed on the encoder side, the
decoding time remains unchanged. Note that if a real time
encoding is needed, the estimation of the p.d.f. can be alter-
natively performed in a similar way as in [10], by computing
a histogram with a small number of bins. In this case, the
probability for each bin must be transmitted to the decoder in
place of the Gaussians parameters.

6. CONCLUSION

In this article, we developed a global tone mapping opera-
tor designed for compressing a High Dynamic Range image
using a low bit depth encoder. Based on a statistical model
of the compression scheme, we found a closed form solution
for the optimal tone curve with respect to rate of the encoded
tone mapped image and the distortion of the reconstructed
HDR image. Our implementation based on the HEVC en-
coder showed improved rate distortion results compared to
the existing global tone mapping operator that only minimizes
the distortion without considering the rate.
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