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ABSTRACT
Progress in invasive brain research relies on signal acquisi-
tion at high temporal- and spatial resolutions, resulting in a
data deluge at the (wireless) interface to the external world.
Hence, data compression at the implant site is necessary in or-
der to comply with the neurophysiological restrictions, espe-
cially when it comes to recording and transmission of neural
raw data. This work investigates spatial correlations of neural
signals, leading to a significant increase in data compression
with a suitable sparse signal representation before the wire-
less data transmission at the implant site. Subsequently, we
used the correlation-aware two-dimensional DCT used in im-
age processing, to exploit spatial correlation of the data set. In
order to guarantee a certain sparsity in the signal representa-
tion, two paradigms of zero forcing are evaluated and applied:
Significant coefficients- and block sparsity-zero forcing.

Index Terms— Neural Signals, Correlation, Data Com-
pression, Compressed Sensing, Sparse Coding

1. INTRODUCTION

Efficient scale integration and the ongoing decrease of feature
size in CMOS processes lead to new fields of microelectronic
applications like fully implantable neural measurement sys-
tems. These systems can be used for medical diagnostics,
neural prostheses or Brain Computer Interfaces (BCIs). The
systems are comprised of a multielectrode array (MEA), an
analog front-end for signal amplification followed by a signal
processing unit and a wireless transceiver. Depending on the
application, the number of channels (electrodes) varies from
very few electrodes (8-36 for some BCIs [1]) to over 100 elec-
trodes [2] or even more than 1000 [3]. If the electrodes are
arranged in close vicinity to each other, a joint processing is
possible, otherwise a set of independent measurement sys-
tems for each couple of electrodes could be beneficial.

In neural measurement systems the wireless link is often
the functional bottleneck in terms of a very limited data rate
of a couple of hundred kBit/s [4], or in terms of energy con-
sumption [5], [6]. For the transmission of neural raw data,
wireless data rates in the order of 20 MBit/s (100 electrodes

with 10 Bit of resolution and a sample rate of 20 kS/s/channel)
could easily occur. In neural measurement system for raw
data transmission, complete waveforms instead of extracted
signal features are of interest. Especially in medical diagnos-
tics information preservation in neural data could be benefi-
cial (e.g. detection of epileptic disorders).

In order to address the restrictions in terms of bandwidth
and/or energy, data compression at the implant site is one pos-
sibility of addressing this obstacle. One option to reduce the
data rate at the RF transceiver is sparse coding. Sparse coding
transforms the signal of interest into a sparse representation
with far fewer (significant) signal coefficients compared to
the original signal representation. Thus, only the sparse rep-
resentation of the signal has to be transmitted over the wire-
less link. At the receiving side, the signal is reconstructed
from the sparse representation by an inverse transformation
or an appropriate optimization program. Generally speaking,
the more structure in the signals is considered by the particu-
lar coding scheme, the higher the compression ratio can get.
Beside the independent sparse coding of each electrode sig-
nal, this work exploits the spatial inter-electrode correlation
between adjacent electrodes in order to increase the compres-
sion ratio at a given reconstruction accuracy.

Fig. 1 shows a system architecture of an implantable neu-
ral measurement system. Neural signals recorded from the
multielectrode array will be amplified in the analog front-end
(AFE). Subsequently, the neural data runs into the main mod-
ule where signal processing and data compression take place.
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Fig. 1. System architecture of an implantable neural measure-
ment system with a compression unit for neural raw data.
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Fig. 2. Example of six correlated neural signals in the time do-
main, recorded by the surface MEA depicted in Fig.3 for the
a posteriori known set of electrodes {30, 38, 39, 47, 46, 45}.

The low-rate wireless transceiver passes the data to the
base station, where signal reconstruction is performed. Since
the system is fully implantable, energy also has to be trans-
ferred wirelessly via an inductive link.

2. SIGNAL CHARACTERISTICS

The neural signals used in this work were recorded invasively
from the human brain by the surface MEA depicted in Fig. 3
at the Epilepsiezentrum Erlangen (EZE) [7]. This neural sig-
nals are sampled at fS = 1024 Hz with a resolution of 16 bits.
Therefore, we only consider local field potentials (LFPs) in
this work.

Note, in the following we deposit a set of P neural signals
with time length N samples in an array X ∈ RP×N . In our
first examination of the neural signals provided by the EZE,
inter-electrode correlations can be observed, as depicted in
Fig. 2 for P = 6 correlated neural signals in time domain,
recorded by the surface MEA, without prior knowledge of the
spatial arrangement of the corresponding electrodes. Subse-
quent mapping of these correlated neural signals to the sur-
face MEA shown in Fig. 3 revealed a close spatial proximity
of the considered electrodes (cmp. Fig. 3, correlated set of
electrodes). Therefore, these signal correlations can easily
be utilized by a joint compression of locally connected elec-
trodes. This could lead to an improved data compression for
certain measurement systems (cmp. Fig.1). Thus, in the fol-
lowing we address C = {30, 38, 39, 47, 46, 45} as a set of
correlated and U = {1, 5, 17, 20, 33, 37} as a set of uncorre-
lated electrodes, respectively neural signals.

2.1. Correlation

In order to measure the similarity between two signals x1 ∈
RN and x2 ∈ RN we use the Pearson product-moment cor-
relation coefficient rx1x2

∈ [−1, 1] with the following defini-
tion

rx1x2 =

∑N
i=1(x1,i − x̄1) · (x2,i − x̄2)

σx1 · σx2

, (1)
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Fig. 3. Schematic electrode layout of the surface MEA (3 mm
diameter, 10 mm spacing) with highlighted sets of uncorre-
lated/correlated electrodes, modified from [9].

Simulation r30,38 r38,39 r39,47 r47,46 r46,45
signal set C 0.872 0.878 0.852 0.866 0.943
Simulation r1,5 r5,17 r17,20 r20,33 r33,37
signal set U -0.028 -0.032 0.019 0.030 -0.018

Table 1. Mean correlation r of a correlated set C and a uncor-
related set U of neural signals recorded by a surface MEA.

where x̄ denotes the mean value and σx corresponds to the
standard deviation of x [8]. The numerator is called covari-
ance and the denumerator includes statistical spread, which is
used for normalization. In case of totally uncorrelated signals
the result of Eqn. (1) becomes zero. The following classifica-
tion is used in order to address the degree of correlation in the
neural signals of specific electrodes:
• 0 ≤ |r| ≤ 0.2: weak correlation

• 0.2 < |r| ≤ 0.5: medium correlation

• 0.5 < |r| ≤ 1: strong correlation
The categorization of the correlation depends strongly on the
utilized signal type. Fig. 2 shows some neural signals from
an MEA, which are strongly correlated, according to the mean
correlation between two different electrodes listed in Table 1.

Each correlation r between neighboring rows in X is at
least 0.852 in the correlated set C of neural signals, showing
a strong correlation according to the classification. The un-
correlated data set U exhibits a maximal r of −0.018, thus
receiving a weak correlation only.

2.2. Data Compression

Data compression is one of the major tasks in information
theory or signal processing [10]. Several techniques can
be applied to compress data by identifying and eliminating
redundancy or unnecessary information in the signal. This
leads to a sparse data representation resulting inK significant
coefficients and (N −K) zeros - called sparse coding.



Sparse Coding: Let x ∈ RN be a (neural) signal in time
domain and c ∈ RN the corresponding K-sparse signal rep-
resentation due to a basis Ψ ∈ RN×N , corresponding to the
expression x = Ψc. Unfortunately, neural signals are not
ideally sparse in a known transform bases [11]. In order to
ensure ideal sparsity for the signal representation c, we uti-
lize zero-forcing. Therefore, we applied a threshold for the
amplitude- or sample-range in the transform domain, which
is called significant coefficients (SC) or block sparsity (BS),
respectively, to obtain ideal sparsity by forcing a set of co-
efficients to zero. By these means we can provide (lossy)
data reduction, because for SC we need to only transmit 2K
values (K for position and K for amplitude) and for BS only
K values for the amplitude value in a defined block of sam-
ples. These two methods can also be applied for Compressed
Sensing to enforce a certain degree of sparsity in the signal of
interest. Compressed Sensing is used as a reference compres-
sion scheme in this work and is described in the following
subsection.

Compressed Sensing: During the last years, new alterna-
tives to traditional data compression techniques were devel-
oped, providing resource efficient data compression, inspired
by the theory of Compressed Sensing (CS). Therefore, an
undersampled signal can successfully be reconstructed with
high probability when information about its inherent structure
is known a priori [12]. To compress a (neural) signal x based
on CS, M � N linear measurements y ∈ RM are taken,
which leads to y = ΦΨc described by the basis Ψ and the
so-called measurement matrix Φ ∈ RN×N . The vector c has
to be K-sparse to enable CS, whereupon K < M . Normally,
this constitutes an underdetermined, ill-posed system of equa-
tions. But due to the sparsity, signal recovery can be rendered
tractably by solving the convex optimization problem

c̃ = arg min
c∈R
‖c‖1 subject to y = ΦΨc, (2)

as long as ΦΨ fulfills the restricted isometry property (RIP)
and coherence requirements [13]. Therefore, a sparse signal
recovery of all K-sparse signals by l1-minimization is guar-
anteed, if at least M ≥ C · K · log(N) measurements are
used, where C > 1 is a constant. In practice the four-to-one
rule M ≥ 4K is recommended [14]. Furthermore, in order
to enable CS recovery for neural signals, e.g. according to
equation (2), a sparsifying basis Ψ has to be chosen.

Discrete Cosine Transform: We applied two forms of a
well-known basis, which has adequate compression proper-
ties considering neural signals [11].

The discrete cosine transform (DCT) is an extraction of
the discrete Fourier transform (DFT) due to mirror symme-
try extensions and exploitation of signal symmetries based on
cosine functions [15]. Therefore, the DCT is only using real
numbers. We used it in order to transform the signal x ∈ RN

to frequency domain, which has adequate compression prop-

erties due to signal decorrelation [16]. That implies a pro-
cess which reduces auto-correlation within a signal or cross-
correlation within a set of signals, while preserving other as-
pects of the signal. In general the DCTII definition,

cn =

N−1∑
b=0

xb · cos
( π
N

(b+ 1/2)n
)
, (3)

is used for data compression, which implies the boundary
conditions of the signals. Hence, cn as a function of n is even
around n = 0 and even around n = N .

Two-Dimensional Discrete Cosine Transform: In order to
compress a set of signals we can transform each signal by us-
ing a one-dimensional DCT or applying a two-dimensional
discrete cosine transform (DCT2) is a straightforward exten-
sion of the DCTII

Cp,n =

P−1∑
a=0

N−1∑
b=0

Xa,b · cos
( π
N

(b+ 1/2)n
)

· cos
( π
P

(a+ 1/2)p
)
. (4)

A DCT2 analyzes a set of signals in terms of time and spa-
tial variations and the linear combination of both variations.
This results in a two-dimensional representation, which could
including only a few large coefficients depending on frequen-
cies within the signals. Therefore, in contrast to DCT, only
DCT2 is able to consider a spatial correlation in a (neural) set
of signals.

Figure of Merit: In order to address the degree of spar-
sity for the signal representation c by a certain transform ba-
sis Ψ, we use the quotient CR = N/K, which denotes the
achievable compression ratio CR ∈ R. The sparser the repre-
sentation of the signal, the higher the achievable compression
ratio.

A criterion to measure the quality of the reconstructed sig-
nal x̂, compared to the original signal x, is the signal-to-noise-
and-distortion ratio (SNDR),

SNDR = 10 dB · log

(
‖x‖22
‖x− x̂‖22

)
, (5)

as another figure of merit (FOM) [17]. The argument of the
logarithm is equivalent to the inverse of the so-called normal-
ized Mean Squared Error (MSE).

3. RESULTS AND DISCUSSION

In this section we exploit correlation in neural signals to ob-
tain a gain of data compression using sparse coding. There-
fore, we consider two sets of neural signals with a length of
N = 256 samples, which are recorded by a surface MEA. By
selecting certain electrodes in the array X, we get a correlated
set C and uncorrelated set U of neural signals, as referred in
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Fig. 4. One sequence of 256 Samples of correlated electrode set C (left handside) and uncorrelated electrode set U (right
handside) neural signals recorded by a surface MEA (cmp. Fig. 3). The intensity of the color denotes the amplitude value in
µV. For the electrodes C a high inter-electrode correlation with smooth transitions is observed. In contrast to this, the electrodes
U exihbit high frequency contents.

Simulation CRSC CRBS CRCS

DCT on signal set U 4.18 5.33 1.73
DCT2 on signal set U 3.91 5.33

DCT on signal set C 9.11 9.85 3.05
DCT2 on signal set C 10.12 9.85

Table 2. Mean CR for a mean SNDR ≈ 11 dB for SC-/BS-
zero forcing and CS using DCT and DCT2 of uncorrelated
set U (top) and correlated set C (bottom) of neural signals
(N = 256) recorded by a surface MEA (cmp. Fig. 3).

section 2.1 and depicted in Fig. 3, which are subject to the
following investigations. Furthermore, we itemize CS as a
reference compression scheme for our results.

Fig. 4 shows the amplitudes of six correlated and uncor-
related neural signals. It can be seen that the set of correlated
signals exhibits a high vertical structure visible in form of
electrode independent vertical bars. We took advantage of the
spatial correlation between each neural signal pair (rows in
X), which reflects an image-related structure. Due to the ver-
tical structure less high frequency coefficients are needed in
the transform domain, because of the smooth signal progres-
sion. Therefore, the usage of a two-dimensional transform
on correlated (neural) data is advantageous and is expected to
lead to higher compression ratios.

In order to evaluate the two sets of neural signals in terms
of compression properties, we consider the CR and SNDR as
figures of merit, as introduced in section 2.2. Furthermore,
we apply SC- and BS-zero forcing to ensure an ideally sparse
signal representation by using DCT or DCT2 for correlated
and uncorrelated signals, respectively. The results in CR at a
certain SNDR for DCT/DCT2 are compared to those of CS
(considering SC-zero forcing for ideal sparse signal represen-
tation), acting as a reference compression scheme. The in-
creasing of CR causes a decreasing of SNDR, depending on

the used signal and basis [11]. For the CS simulations, CVX
was used to solve the l1-minimization problem [18].

The upper part of Table 2 shows the mean compression
ratios (CR) for a given SNDR of approximately 11 dB ap-
plied to the set of uncorrelated neural signals. The difference
in CR with SC-zero forcing is a consequence of the addi-
tional high vertical frequency components of the signal set
U in the DCT2 domain compared to the DCT, leading to a
higher amount of frequency coefficients above threshold, thus
decreasing the CR. Due to the threshold for small frequency
coefficients, SC obtains much more sparsity than BS, how-
ever for SC the positions of the frequency coefficients have
to be transmitted too, ending up in a CR divided by two, as
shown in Table 2. Furthermore, the CRBS remains constant
due to the identical block-size for BS-zero forcing applied on
DCT and DCT2. Compared to SC, we observe an increased
CR of BS-zero forcing for both transform schemes by this
correlation-independent block-size implementation.

In the lower part of Table 2 the figure of merit for cor-
related neural signals, recorded from neighboring electrodes
(cmp. Fig. 3) is shown. Again, in order to evaluate the achiev-
able CR we targeted approximately the same SNDR of 11 dB
for a better comparability. Due to the smooth spatial (ver-
tical) structure of the correlated signals (cmp. Fig. 4) the
DCT2 signal representation needs less large frequency coeffi-
cients, which results in a higher CR, compared to the DCT for
SC-zero forcing of correlated signals in set C. Furthermore,
in contrast to the upper part of Table 2 DCT2 on correlated
(neural) signals achieve an increased CR for SC-forcing com-
pared to BS. In contrast to CS, both zero forcing methods
exihbit highter CRs independent of the degree of correlations
in U and C.

The comparison of compression properties between cor-
related and uncorrelated neural signals performing DCT and
DCT2 with SC-zero forcing is illustrated in Table 3. For the
enforced sparsity of the signal representation we used similar



Simulation signal set U signal set C
∆CRSC,(DCT2−DCT) -0.27 +1.01

Table 3. Gain of CRSC based on Table 2, when using DCT2
instead of DCT for the signal sets U and C, respectively.

signal qualities (SNDR ≈ 11 dB) in both cases. According to
Table 3 a relative gain in CR of +1.01 for correlated signals
is achievable. As a consequence exploiting correlated (neu-
ral) signals for adequate joint data compression using a two-
dimensional transform bases like DCT2 is recommended.

4. CONCLUSION

This paper deals with the spatial correlation in neural signals
and evaluates different compression schemes to make use of
this signal feature in sensor systems where the data rate of the
wireless link is the most severe constraint. The exploitation of
correlation by grouping neighboring electrodes leads to a sig-
nificant improvement in data compression with a proper kind
of sparse signal representation using DCT2 for sparse coding.
Therefore, in order to guarantee a certain sparsity in the signal
representation, the paradigms of significant coefficients- and
block sparsity-zero forcing are evaluated and applied. Also
Compressed Sensing was evaluated as a possible compres-
sion scheme, trading lower CRs (cmp. Table 2) for a reduced
hardware complexity at the transmitter, which could be bene-
ficial especially for neural measurement systems with a high
channel count (more than 22 channels [19]). As stated above,
real measurements of neural signals were available for our
examination. We showed a significant increase in terms of
compression ratio (CR) at a given SNDR for correlated neu-
ral signals using DCT2 compared to uncorrelated data.
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