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ABSTRACT
Using a Bayesian approach, we consider the problem of re-
covering sparse signals under additive sparse and dense noise.
Typically, sparse noise models outliers, impulse bursts or data
loss. To handle sparse noise, existing methods simultaneously
estimate sparse noise and sparse signal of interest. For esti-
mating the sparse signal, without estimating the sparse noise,
we construct a Relevance Vector Machine (RVM). In the
RVM, sparse noise and ever present dense noise are treated
through a combined noise model. Through simulations, we
show the efficiency of new RVM for three applications: kernel
regression, housing price prediction and compressed sensing.

Index Terms— Robust regression, Bayesian learning,
Relevance vector machine, Compressed sensing

1. INTRODUCTION

Noise modeling has an important role in a Bayesian infer-
ence setup to achieve better robustness and accuracy. Typi-
cally noise is considered to be additive and dense in nature
for a Bayesian linear model. In this paper we investigate the
effect of sparse noise modeling in a standard Bayesian infer-
ence tool called relevance vector machine (RVM) [1].

The RVM is a Bayesian sparse kernel technique for ap-
plications in regression and classification [1]. Interest in the
RVM can be attributed to the cause that it shares many char-
acteristics of the popular support vector machine whilst pro-
viding Bayesian advantages [2], mainly providing posteriors
for the object of interest. Generally RVM is a fully Bayesian
technique that aims for learning all the relevant system pa-
rameters iteratively to infer the object of interest. In a linear
model setup used for regression, RVM introduces sparsity in
a weight vector where the weights are essential to form a lin-
ear combination of relevant kernels to predict the object of
interest; the weight vector is a set of system parameters and
its sparsity leads to reduction of model complexity for regres-
sion. Naturally, the RVM has been further used for sparse rep-
resentation techniques as well as developing Bayesian com-
pressive sensing methods [3].
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For a Bayesian linar model, a standard RVM uses a mul-
tivariate isotropic Gaussian prior to model the additive dense
noise. Here isotropic means that the associated covariance
matrix is proportional to the identity matrix. Such a dense
noise model has inherent limitations to accommodate in-
stances of data outliers, impulse bursts or missing (lost) data.
We hypothesize that a sparse noise model in addition with the
dense noise model can accommodate variety of noise types,
without causing degradation in performance for any noise
type compared to the case of using only dense noise model.
In this paper, we develop RVM for such a combined (joint)
sparse and dense noise scenario.

1.1. System model

We consider the following linear system model

y = Ax + e + n, (1)

where y ∈ Rm is the measurements, x ∈ Rn is a sparse vec-
tor (for example weights in regression or sparse signal to esti-
mate in compressed sensing), A ∈ Rm×n is a known system
matrix (for examples regressors or sampling system). Further
e ∈ Rm is the sparse noise and n ∈ Rm is the dense noise.
Using `0-norm notation to represent number of non-zeros in
a vector, we assume that ||x||0 � n and ||e||0 � m are un-
known. The random vectors x, e and n are independent. The
model (1) was used earlier for face recognition [4], image de-
noising [5] and compressed sensing [3].

1.2. Our contribution

We develop a RVM for the model (1), by treating e + n as
a combined noise. Therefore we learn parameters of x and
e + n, and hence estimate x without directly estimating e.
The main technical contribution is to derive update equations
which are used iteratively for estimation of parameters in the
new RVM. We refer to the new RVM as the RVM for com-
bined sparse and dense noise (SD-RVM). Finally, by an ap-
proximate analysis, the SD-RVM algorithm is shown to be
equivalent to a non-symmetric sparsity inducing heuristic.



1.3. Prior work

To establish relevance of our work we briefly describe prior
works in this section. Almost all prior works translates the
linear setup (1) to an equivalent setup as follows

y =
[

A Im
] [ x

e

]
+ n, (2)

where Im is the m × m identity matrix,
[

A Im
]

acts

as the effective system matrix and
[
x> e>

]>
is required to

find. The robust Bayesian RVM (RB-RVM) of [5] uses the
standard RVM approach for the model (2) directly. Hence
RB-RVM learns model parameters for all three signals x =
[x1, x2, . . . , xn]>, e = [e1, e2, . . . , em]> and n, and even-
tually ends up finding both x and e jointly. RB-RVM uses
Gaussian distrbutions

x ∼
n∏
i=1

N (0, γ−1i ), e ∼
m∏
i=1

N (0, ν−1i ), n ∼ N (0, β−1Im),

where the precisions (inverse variance) γi, νi and β are un-
known. The precisions have conjugate Gamma priors

p(γi) = Gamma(γi|a+ 1, b), (3)
p(νi) = Gamma(νi|a+ 1, b),

p(β) = Gamma(β|c+ 1, d),

where Gamma(γi|a+ 1, b) ∝ γai e
−bγi [1]. To make the pri-

ors non-informative, the RVM uses the limit (a, b, c, d) → 0.
In calculations, however, the parameters are often given
small values to avoid numerical instabilities. To estimate[
x> e>

]>
, RB-RVM fixes the precisions and sets[

x̂> ê>
]>

= βΣRB [A Im]>y, (4)

ΣRB = (Γ̃ + β[A Im]>[A Im])−1,

where Γ̃ = diag(γ1, γ2, . . . , γn, ν1, ν2, . . . , νm). The RB-
RVM iteratively updates the precisions by (approximately)
maximizing the marginal distribution p(y, {γi}, {νi}, β), giv-
ing

γnewi =
1− γi[ΣRB ]ii

x̂2i
, νnewi =

1− νi[ΣRB ]n+i,n+i
ê2i

,

βnew =

∑n
i=1 γi[ΣRB ]ii

||y −Ax̂− ê||22
, (5)

where [ΣRB ]ii denotes the (i, i) element of the matrix ΣRB .
Derivation of (4) and (5) can be found in e.g. [1, 2]. Iterating
until convergence gives the final estimate x̂ and ê. In the itera-
tions, some precisions become large, making their respective
components in x̂ and ê close to zero. This makes the final
estimate of x̂ and ê sparse.

Further, non Bayesian (even not statistical) methods,
mainly `1-norm minimization based convex optimization

methods have also been used. For example, justice pursuit
(JP) [6] uses the optimization technique of the standard basis
pursuit denoising optimization [7], as follows

x̂, ê = arg min
x,e
||x||1 + ||e||1 s.t. ||y −Ax− e||2 ≤ ε,

(6)

where ε > 0 is a model parameter set by a user. For unknown
noisepower, it is impossible to know ε a-priori. We mention
that a fully Bayesian setup like RVM does not need parame-
ters set by a user.

2. RVM FOR COMBINED SPARSE AND DENSE
NOISE (SD-RVM)

To make the RVM robust against outlier noise we combine
the noise as

e + n ∼ N (0,B−1), (7)

where B = diag(β1, β2, . . . , βm). We use precisions for the
total noise, rather than the individual noise terms, since they
need not be separated in most applications.

Using the noise model (7), we find estimates

x̂ = ΣA>By,

Σ = (Γ + A>BA)−1,

where Γ = diag(γ1, γ2, . . . , γn). The precisions are updated
as

γnewi =
1− γiΣii

x̂2i
, (8)

βnewj =
1− βj [AΣA>]jj

[y −Ax̂]2j
, (9)

where Σii = [Σ]ii.

2.1. Derivation of update equations

For fixed γ = (γ1, γ2, . . . , γn) and β = (β1, β2, . . . , βm),
the maximum a posteri (MAP) estimate of x becomes

x̂ = arg max
x

log p(y,x|γ,β)

= ΣA>By,

where Σ = (Γ + A>BA)−1.
To update the precisions we maximize the marginal dis-

tribution p(y,γ,β) = p(y|γ,β)p(γ)p(β), with respect to γi
and βj , where now

p(βj) = Gamma(βj |c+ 1, d),



and p(γi) is as in (3). The log-likelihood of the parameters is

L =constant− 1

2
log det(B−1 + AΓ−1A>) (10)

− 1

2
y>(B−1 + AΓ−1A>)−1y

+

n∑
i=1

(a log γi − bγi) +

m∑
j=1

(c log βj − dβj).

Using that a>i (B−1+AΓ−1A>)−1y = γix̂i, where ai is the
i’th column vector of A, and the matrix determinant lemma
[8] to write

det(B−1 + AΓ−1A>) = det(Σ−1)det(Γ−1)det(B−1),

we find that L is maximized when

−1

2
Σii +

1

2γi
+
a

γi
− b− 1

2
x̂2i = 0. (11)

Instead of solving for γi (which would require solving a
non-linear equation since Σ and x̂ depends on γi) we rewrite
the equation as

1− γiΣii + 2a− (x̂2i + 2b)γnewi = 0. (12)

We solve (12) for γnewi rather than (11) for γi since it in prac-
tice often results in a better convergence [1, 9]. The update
equation then becomes

γnewi =
1− γiΣii + 2a

x̂2i + 2b
.

Setting a = b = 0 we obtain (8).
Using the relation

∂

∂βj

[
y>(B−1 + AΓ−1A>)−1y

]
= [y −Ax̂]2j ,

we find that L is maximized w.r.t. βj when

∂L
∂βj

= −1

2
tr(Σbjb

>
j ) +

1

2βj
− 1

2
[y −Ax̂]2j +

c

βj
− d = 0,

where b>j is the j’th row vector of A. Rewriting the equation
as

1− βjb>j Σbj + 2c− ([y −Ax̂]2j + 2d)βnewj = 0,

and using that b>j Σbj = [AΣA>]jj , we get the update
equation

βnewj =
1− βj [AΣA>]jj + 2c

[y −Ax̂]2j + 2d
.

Setting c = d = 0 we obtain (9).

2.2. Analysis of sparsity

Several approximations are made in the iterative update equa-
tions. It is interesting how the approximations affect the
sparsity of the solution. In this subsection, we show that
the approximations make the SD-RVM equivalent to a non-
symmetric sparse heuristic.

To motivate that the standard RVM is sparsity promoting,
one can use that the marginal distribution of xi is a student-t
distribution [1]. For a fixed β (and e = 0), the standard RVM
is therefore an iterative method for solving

min
x,β

β

2
||y −Ax||22 +

n∑
i=1

(1 + 2a) log(x2i + 2b).

The log-sum heuristic can be used as a sparsity promoting
heuristic, making it plausible that the RVM promotes sparsity.

For the SD-RVM, the precisions are updated by maximiz-
ing (10). We show approximations for releveant parts of the
right hand side of (10) as follows

log det(Σ−1) ≈ log det((Σold)−1)

+

n∑
i=1

Σoldii (γi − γoldi ) +

m∑
j=1

[AΣoldA>]jj(βj − βoldj ).

We rewrite the problem in variables x and ẽ using that [10]

y>(AΓ−1A> + β−1)−1y = min
x,ẽ

n∑
i=1

γix
2
i +

m∑
j=1

βj ẽ
2
j ,

such that Ax + ẽ = y

where now ẽ = e + n as in (7). Under these approximations,
minimizing (10) is equivalent to

min
γi,βj ,x,ẽ

n∑
i=1

[
(x2i + Σoldii + 2b)γi + (1 + 2a) log(γi)

]
+

m∑
j=1

[
(e2j + [AΣoldA>]jj + 2d)βj + (1 + 2c) log(βj)

]
.

such that Ax + e = y

By minimizing with respect to γi and βj , the problem reduces
to

min
x,e

(1 + 2a)

n∑
i=1

log(x2i + Σoldii + 2b) (13)

+ (1 + 2c)

m∑
j=1

log(ẽ2j + [AΣoldA>]jj + 2d),

such that Ax + ẽ = y

where we have ignored additive constants. Because of the
approximations, the constants Σoldii and [AΣoldA>]jj make
the heuristic non-symmetric. The SD-RVM is thus equivalent
to a non-symmetric sparse heuristic.



3. SIMULATION EXPERIMENTS

3.1. Kernel regression with outliers

In Kernel regression, we observe noisy measurements y(ti) at
point ti of an underlying signal z(t). We model the signal as

y(ti) =

n∑
j=1

K(ti, tj)xj + ni, (14)

where K(t, s) is the regression kernel and ni is noise. One
common choice is the Gaussian kernelK(t, s) = e−(t−s)

2/2σ

[2], where σ is sometimes called the scale of the kernel. By
estimating the parameters xi we predict the waveform at an
unobserved point t as

ẑ(t) =

m∑
j=1

K(t, tj)x̂i.

The goal is to minimize the prediction error z(t)− ẑ(t). The
least square estimate for (14) often leads to over-fitting since it
rather describes the noise than the actual signal. One method
to avoid over-fitting is to use a sparse x, since it results in a
smoother predicted signal.

In simulations we observed 40 noisy samples of the sinc-
function

y(ti) = sinc(ti) + ei + ni,

where ti = −4 + 0.2i for i = 0, 1, . . . , 40, ni ∼ N (0, 0.01),
ei = ±5 with equal probability if ei 6= 0 and sinc(t) denotes
the sinc function [1]. We varied the number of outliers and
chose the position of the outliers uniformly at random. A
Gaussian kernel with scale σ = 0.1 was used as regression
kernel. The NMSE of the complete waveform

NMSE = E

[∫ 4

−4

|sinc(t)− ẑ(t)|2dt
]/∫ 4

−4

|sinc(t)|2dt , (15)

averaged over 100 realizations is shown in Figure 1. We see
that RB-RVM and SD-RVM give 1 to 2 dB lower NMSE than
JP. We used the cvx toolbox [11] for JP.

3.2. House price prediction

For this housing price prediction we used the Boston housing
dataset [12]. The dataset consists of 506 instances of house
prices in suburbs of Boston and 13 other variables (air qual-
ity, accessibility, pupil-to-teacher ratio, etc.). The problem is
to predict the median housing price for a subset of data (test
dataset) by using the complement dataset (training dataset) to
learn regression parameters. Few parameters are believed to
be important to the average customer and very expensive or
inexpensive houses can be considered as outliers since only
the majority of houseprices determine the median.

We used 380 instances (75%) as training set and the rest as
test set. By choosing the training set uniformly at random we

Fig. 1. NMSE vs. ||e||0 for kernel regression with outliers.

Algorithm RVM RB-RVM SD-RVM
Mean error 1.30 0.49 0.56
Mean cputime 1.71 11.60 1.83

Table 1. Prediction of median houseprice using the Boston
Housing dataset with 75% used as training set.

measured the mean error of the predicted median and mean
cputime (in seconds) over 1000 realizations. We found that
RB-RVM gave 13% lower mean error than SD-RVM, how-
ever, RB-RVM was 6 times slower than SD-RVM. Both RB-
RVM and SD-RVM outperformed the standard RVM.

3.3. Compressed sensing

The recovery problem in compressed sensing consists of
estimating the sparse vector x in (1) for m � n. To numer-
ically evaluate the algorithms, we generated measurement
matrices A ∈ Rm×n by drawing their components from a
N (0, 1) distribution and scaling their column vectors to unit
norm. We selected positions of the active components of x
and e uniformly at random and their values from N (0, 1).
We set ||x||0 = 3. The Gaussian noise n has a distribution
N (0, σ2

nIm). We compared JP, the standard RVM, RB-RVM
and SD-RVM. For JP (6) we assumed σn to be known and set
ε = σn

√
m+ 2

√
2m as proposed in [13].

In the simulations we varied the sampling rate, m/n, (ra-
tio of measurements and the signal dimension) for measure-
ments without outliers and with 5% outliers. We chose n =
100 and fixed the Signal-to-Noise-Ratio (SNR)

SNR = E[||Ax||22]/E[||n||22] = ||x||0/(mσ2
n),

to 20 dB. By generating 100 measurement matrices and 100
vectors x and e for each matrix we numerically evaluated the
Normalized Mean Square Error (NMSE)

NMSE = E[||x− x̂||22]/E[||x||22].



Fig. 2. NMSE vs. m/n for outlier-free measurements.

Fig. 3. NMSE vs. m/n for 5% outliers in measurements.

The results are shown in Figure 2 and Figure 3. We found that
SD-RVM outperformed the other methods. The improvement
of SD-RVM over RB-RVM was 1 to 1.5 dB for m/n > 0.5,
with and without outliers. Compared to JP, the improvement
of SD-RVM was 3 to 3.7 without outlier noise and 1 to 4
dB with outlier noise when m/n > 0.5. The experiments
reveal that the SD-RVM does not loose generalizability in the
absence of sparse outliers.

4. CONCLUSION

In this paper we show that a single noise model to combine
sparse and dense noises can be used for the Baysian rele-
vance vector machine (RVM). The combined modeling ap-
proach leads to a good efficiency for relevance vector ma-
chine. Through experiments on synthetic data for kernel re-
gression as well as compressed sensing and real data for house
pricing prediction using the Boston housing dataset, we show
that our developed RVM can perform efficiently in the sense

of both prediction performance and computation time.
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