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ABSTRACT
Massive MIMO (multiple-input multiple-output) has been
recognized as an efficient solution to improve the spectral
efficiency of future communication systems. However, in-
creasing the number of antennas and users goes hand-in-hand
with increasing computational complexity. In particular, the
precoding design becomes involved since near-optimal pre-
coding, such as regularized-zero forcing (RZF), requires the
inversion of a large matrix. In our previous work [1] we
proposed to solve this issue in the single-cell case by ap-
proximating the matrix inverse by a truncated polynomial
expansion (TPE), where the polynomial coefficients are se-
lected for optimal system performance. In this paper, we
generalize this technique to multi-cell scenarios. While the
optimization of the RZF precoding has, thus far, not been
feasible in multi-cell systems, we show that the proposed
TPE precoding can be optimized to maximize the weighted
max-min fairness. Using simulations, we compare the pro-
posed TPE precoding with RZF and show that our scheme
can achieve higher throughput using a TPE order of only 3.

Index Terms— Massive MIMO, linear precoding, low
complexity, multi-cell systems, random matrix theory.

1. INTRODUCTION

One of the major challenges in multi-cell systems is deal-
ing with inter-cell and intra-cell interference. Currently, the
general trend is to deploy multiple antennas at the base sta-
tions (BSs), thereby enabling multi-user MIMO with flexi-
ble spatial interference mitigation [2]. User separation in the
downlink is then performed using linear precoding. Unfortu-
nately, the use of optimal precoding designs is far from be-
ing incorporated in current wireless standards such as LTE-
Advanced [3]. This can be attributed to the fact that very
accurate instantaneous channel state information (CSI) is re-
quired, which can be cumbersome to achieve in practice [4].
One can imagine that this becomes worse as the number of
BS antennas, M , and the number of users, K, increase. In-
terestingly, this is not the case in reality. As M → ∞ for a

This research has been supported by the ERC Starting Grant 305123
MORE (Advanced Mathematical Tools for Complex Network Engineering)
and an International Postdoc Grant from The Swedish Research Council.

fixed K, simple linear precoding, like maximum ratio trans-
mission (MRT), is asymptotically optimal [5] and robust to
CSI imperfections [6]. Nevertheless, MRT is not very appeal-
ing at practical values of M and K, since it does not actively
suppress residual inter-user interference [7]. In fact, a pre-
coding design based on both M and K growing large, with a
fixed ratio, yields better massive MIMO performance [7]. In
this regime, RZF precoding is near-optimal from a throughput
perspective. However, it requires calculation of the inverse of
the Gram matrix of the joint channel of all users, which is a
non-trivial operation with a complexity scaling ofMK2. For-
tunately, the system performance is predictable in the large-
(M,K) regime, where advanced tools from random matrix
theory provide deterministic approximations of the achiev-
able rates [7]. In light of these results, we proposed in [1] to
solve the precoding complexity issues in single-cell systems
using a new family of precoding schemes called TPE precod-
ing. This family was obtained by approximating the matrix
inverse in RZF precoding by a matrix polynomial. A similar
approach was independently proposed in [8].

In this paper, we extend the TPE precoding from [1] to
the scenario of multi-cell massive MIMO systems. A special
focus is placed on the analysis of realistic characteristics, in-
cluding user-specific channel covariance matrices, imperfect
CSI and pilot contamination. The proofs of our results can be
found in the extended version of this paper; see [9].

2. SYSTEM MODEL

We consider the downlink of a multi-cell system composed of
L > 1 cells. Each cell consists of a M -antenna BS serving
K single-antenna users. We assume a time-division duplex
(TDD) protocol where the BS acquires instantaneous CSI in
the uplink and uses it for the downlink transmission, exploit-
ing channel reciprocity. The TDD protocols are synchronized
across cells, so that pilot signaling and data transmission take
place simultaneously. The received complex baseband signal
at the mth user terminal (UT) in the jth cell is

yj,m =

L∑
`=1

hH
`,j,mx` + nj,m (1)

where x` ∈ CM×1 is the transmit signal from the `th BS and
h`,j,m ∈ CM×1 is the channel vector from that BS to the



mth UT in the jth cell, and nj,m ∼ CN (0, σ2) is the additive
circularly-symmetric complex Gaussian noise with variance
σ2. The channel vectors are modeled as Rayleigh fading with

h`,j,m ∼ CN
(
0,R`,j,m

)
(2)

where the family of covariance matrices (R`,j,m)L,L,K`=1,j=1,m=1

satisfy the following conditions:
• Bounded norm: lim supM ‖R`,j,m‖2 < +∞, ∀`, j,m;

• Trace scaling: lim infM
1
M tr (R`,j,m) > 0, ∀`, j,m;

• Finite dimensional matrix space for R`,j,m: It exists a fi-
nite integer S > 0 and a linear independent family of ma-
trices F1, . . . ,FS such that R`,j,m =

∑S
k=1 α`,j,m,kFk.

Note that these conditions are less restrictive than the one used
in [10], where R`,j,m was assumed to belong to a finite set of
matrices. It is also in agreement with several physical channel
models presented in the literature; for example, the one-ring
model with user groups from [11]. This channel model con-
siders a finite numberG of groups which share approximately
the same location and thus the same covariance matrix. Let
θ`,j,g and ∆`,j,g be, respectively, the azimuth angle and the
azimuth angular spread between the cell ` and the users in
group g of cell j. Moreover, let d be the distance between
two adjacent antennas (see Fig. 1 in [11]). Then, the (u, v)th
entry of the covariance matrix R`,j,m for users in group g is

[R`,j,m]u,v =
1

2∆`,j,g

∫ ∆`,j,g+θ`,j,g

−∆`,j,g+θ`,j,g

ed(u−v) sinαdα. (3)

We also assume that all BSs use Gaussian codebooks and lin-
ear precoding, such that the jth cell transmits the signal

xj =

K∑
m=1

gj,msj,m = Gjsj (4)

where Gj = [gj,1, . . . ,gj,K ] ∈ CM×K is the precoding ma-
trix and sj = [sj,1, . . . , sj,K ] ∼ CN (0, IK) is the vector con-
taining the data symbols for UTs in the jth cell. The trans-
mission at BS j is subject to a transmit power constraint

1

K
tr
(
GjG

H
j

)
= Pj (5)

where Pj is the average transmit power per user in the jth
cell. The received signal (1) can be thus expressed as

yj,m =

L∑
`=1

K∑
k=1

hH
`,j,mg`,ks`,k + nj,m. (6)

A well known feature of large-scale MIMO systems is chan-
nel hardening, which implies that the effective useful channel
hH
j,j,mgj,m converges to its average value as M → ∞. We

decompose the received signal as

yj,m = E
[
hH
j,j,mgj,m

]
sj,m + sj,m

(
hH
j,j,mgj,m − E

[
hH
j,j,mgj,m

])
+

∑
(`,k)6=(j,m)

h`,j,mg`,ks`,k + nj,m

and assume, similar to [6,7], that the receiver only knows the
average channel gain E[hH

j,j,mgj,m], the average sum inter-
ference power

∑
`,k E[|hH

`,j,mg`,k|2] and the variance of the
noise σ2. By treating interference as worst-case Gaussian
noise, the ergodic achievable rate of UT m in cell j is

rj,m = log2(1 + γj,m) (7)

where

γj,m =
|E [hj,j,mgj,m]|2

σ2 +
∑
`,k E

[
|hH
`,j,mg`,k|2

]
−
∣∣E [hH

j,j,mgj,m
]∣∣2 .

(8)

2.1. Model of Imperfect Channel State information

Based on a TDD protocol, the channel is estimated in the up-
link. In each cell, the UTs transmit mutually orthogonal pilot
sequences, thereby allowing the BS to acquire CSI. Since the
same set of orthogonal sequences is reused in each cell, the
channel estimation is corrupted by inter-cell interference; this
is called pilot contamination [6]. To estimate the channel cor-
responding to UT k in cell j, each BS correlates the received
signal with the pilot sequence of that user. This results in the
processed received signal

ytr
j,k = hj,j,k +

∑
` 6=j

hj,`,k +
1
√
ρ
tr

ntr
j,k (9)

where ntr
j,k ∼ CN (0, IM ) and ρtr > 0 is the effective pilot

SNR [7]. The MMSE estimate ĥj,j,k of hj,j,k is

ĥj,j,k=Rj,j,kSj,ky
tr
j,k=Rj,j,kSj,k

(
L∑
`=1

hj,`,k+
1
√
ρ

tr

ntr
j,k

)

where Sj,k = ( 1
ρtr

+
∑L
`=1 R`,j,k)−1. The estimated channel

vectors at the jth BS to all UTs in its cell is denoted by

Ĥj,j =
[
ĥj,j,1, . . . , ĥj,j,K

]
∈ CM×K . (10)

We also define Φj,`,k = Rj,j,kSj,kRj,`,k ∈ CM×M and note
that ĥj,j,k ∼ CN (0,Φj,j,k) is independent from the estima-
tion error ĥj,j,k − hj,j,k since the MMSE estimator is used.

3. MULTI-CELL LINEAR PRECODING

3.1. Regularized zero-forcing precoding

For multi-cell systems, the optimal linear precoding is un-
known under imperfect CSI and requires extensive optimiza-
tion procedures under perfect CSI [4]. Therefore, only heuris-
tic precoding schemes are feasible in multi-cell systems. RZF
precoding is the state-of-the-art heuristic scheme in terms of



system throughput [4]. Using the notation of [7], the RZF
precoding matrix used by the BS in the jth cell is

Grzf
j =

√
Kβj

(
Ĥj,jĤ

H
j,j +KϕjIM

)−1

Ĥj,j (11)

where the scalar parameter βj > 0 is set to satisfy the power
constraint in (5) and ϕj is a positive regularizing parameter.

Prior works have considered the optimization of the pa-
rameter ϕj in the single-cell case. This parameter provides a
balance between maximization of the channel gain at each in-
tended receiver (ϕj is large) and the suppression of inter-user
interference (when ϕj is small). To the authors’ knowledge, a
closed-form optimization of the regularization parameter for
multi-cell scenarios has thus far not been achieved. Hence,
previous works have been restricted to the analysis of intu-
itive choices of the regularization parameter ϕj . In this con-
text, the work in [7] considers massive MIMO performance
of the RZF precoding in the large-(M,K) regime, where M
and K tend to infinity such that

0 < lim inf
K

M
≤ lim sup

K

M
< +∞. (12)

3.2. Truncated Polynomial Expansion Precoding

The matrix multiplications and inversion in (11) gives RZF
precoding an unfavorable complexity scaling of MK2 [1].
Building on the concept of TPE used in our work in [1],
we propose a new class of low-complexity linear precoding
schemes also for the multi-cell case. The proposed precoding
originates from the Cayley-Hamilton theorem which states
that the inverse of a M × M matrix can be written as a
weighted sum of its first M powers. A simplified precoding
can then be obtained by considering only the first matrix
powers. Assume that the jth BS employs a truncation order
Jj , then the proposed TPE precoding matrix is given by

GTPE
j =

Jj−1∑
n=0

wn,j

(
Ĥj,jĤ

H
j,j

K

)n
Ĥj,j√
K

where {wn,j , j = 0, . . . , Jj − 1} are the Jj scalar coefficients
that are employed by the jth BS and the normalization by

√
K

controls the energy of the precoding matrix. Note that while
the RZF precoding has only a single regularization parameter,
the proposed TPE precoding scheme offers a larger set of Jj
design parameters. These coefficients define a parametrized
class of precoding schemes ranging from MRT (Jj = 1) to
RZF precoding, which is achieved at Jj = min (M,K) by se-

lecting wn,j from the characteristic polynomial of
Ĥj,jĤ

H
j,j

K +
ϕjIM . The coefficients are optimized later in this paper. The
complexity of TPE precoding scales only as MK [1].

4. ASYMPTOTIC PERFORMANCE ANALYSIS

We provide in this section an asymptotic performance anal-
ysis of the proposed TPE precoding. In particular, we show

that in the large (M,K)-regime, the SINR experienced by the
mth UT served by the jth cell can be approximated by a de-
terministic term which depends only on the channel statistics.
Before stating our main results, we cast the SINR expression
(8) in a simpler form. Let wj =

[
w0,j , . . . , wJj−1,j

]T
and let

aj,m ∈ CJj×1 and B`,j,m ∈ CJj×Jj be given by

[aj,m]n =
hH
j,j,m√
K

Vn,j

ĥH
j,j,m√
K

, n ∈ [0, Jj − 1]

[B`,j,m]n,p =
1

K
hH
`,j,mVn+p+1,`h`,j,m n, p ∈ [0, J` − 1]

where Vn,j =
( Ĥj,jĤ

H
j,j

K

)n
. Then, the SINR experienced by

the mth UT in the jth cell is

γj,m =

∣∣E [wH
jaj,m

]∣∣2
σ2

K +
∑L
`=1 E [wH

`B`,j,mw`]−
∣∣E [wH

jaj,m
]∣∣2 .

(13)
As aj,m and B`,j,m are of finite dimensions, it suffices to de-
termine an asymptotic approximation of the expected value of
each of their elements. For that, we introduce the functionals

Xj,m(t) =
1

K
hH
j,j,mΣ(t, j)ĥj,j,m

Z`,j,m(t) =
1

K
hH
`,j,mΣ(t, `)h`,j,m

where Σ(t, j) =
( tĤj,jĤ

H
j,j

K + IM
)−1

. It is easy to see that

[aj,m]n =
(−1)n

n!
X

(n)
j,m (14)

[B`,j,m]n,p =
(−1)n+p+1

(n+ p+ 1)!
Z

(n+p+1)
`,j,m . (15)

where X
(n)
j,m and Z

(n+p+1)
`,j,m represent the derivatives of

Xj,m(t) and Z`,j,m(t) at t = 0.

Theorem 1 Let Xj,m(t) and Z`,j,m(t) be

Xj,m(t) =
δj,m(t)

1 + tδj,m(t)

Z`,j,m(t) =
1

K
tr (R`,j,mT`(t))−

t
∣∣ 1
K tr Φ`,j,mT`(t)

∣∣2
1 + tδ`,m(t)

where for each j = 1, . . . , L, m = 1, . . . ,K, δj,m(t) are the
unique positive solutions to the following system of equations:

δj,m(t) =
1

K
tr

Φj,j,m

(
1

K

K∑
k=1

tΦj,j,k

1 + tδj,k(t)
+ IM

)−1


and Tj(t) =
(

1
K

∑K
k=1

tΦj,j,k

1+tδj,k(t) + IM

)−1

. In the large-

(M,K) regime we have

E [Xj,m(t)]−Xj,m(t) −−−−−−−→
M,K→+∞

0

E [Z`,j,m(t)]− Z`,j,m(t) −−−−−−−→
M,K→+∞

0.



Corollary 2 The following holds in the large-(M,K) regime:

E
[
X

(n)
j,m

]
−X(n)

j,m −−−−−−−→
M,K→+∞

0, (16)

E
[
Z

(n)
`,j,m

]
− Z(n)

`,j,m −−−−−−−→
M,K→+∞

0 (17)

where X
(n)

j,m and Z
(n)

`,j,m are the derivatives of X(t) and
Z`,j,m(t), respectively, at t = 0.

The deterministic quantities X
(n)

j,m and Z
(n)

`,j,m are func-

tions of the pth derivatives δ(p)
`,k and T

(p)
` of δ`,k(t) and T`(t)

at t = 0, p = 0, . . . , n. Denote by X
(0)

j,m = 1
K tr(Φj,j,m) and

Z`,j,m = 1
K tr(R`,j,m). We can compute the deterministic

sequences X
(n)

j,m and Z
(n)

`,j,m as

X
(n)
j,m = −

n∑
k=1

(
n

k

)
kX

(k−1)

j,m δ
(n−k)
j,m + δ

(n)
j,m

Z
(n)

`,jab,m =
1

K
tr
(
R`,j,mT

(n)
`

)
−

n∑
k=0

k

(
n

k

)
δ

(n−k)
l,m Z

(k−1)

`,j,m

+

n∑
k=0

k

(
n

k

)
δ

(n−k)
`,m

1

K
tr
(
R`,j,mT

(k−1)
`

)
where δ(p)

`,k and T
(p)
` can be computed using the iterative al-

gorithm in [10]. Substituting the deterministic equivalent of
Theorem 1 into (14) and (15), we get the following result.

Corollary 3 Let aj,m and B`,j,m be given by

[aj,m]n =
(−1)n

n!
X

(n)
j,m,[

B`,j,m

]
n,p

=
(−1)n+p+1

(n+ p+ 1)!
Z

(n+p+1)

`,j,m .

Then, aj,m and B`,j,m converge as

max
`,j,m

(
E
[
‖B`,j,m −B`,j,m‖

]
,E [aj,m − aj,m]

)
−−−−−−−→
M,K→+∞

0.

in the large-(M,K) regime and the SINRs converge as

γj,m − γj,m −−−−−−−→
M,K→+∞

0 (18)

where γj,m =
wH

j aj,maH
j,mwj∑L

`=1 wH
`B`,j,mw`−wH

j aj,maH
j,mwj

.

5. SYSTEM PERFORMANCE OPTIMIZATION

In the previous section, we derived deterministic equivalents
of the SINR at each UT in the multi-cell system as a function
of the polynomial coefficients {w`,j , ` ∈ [1, L] , j ∈ [0, J` − 1]}
of the TPE precoding. These coefficients can be selected to
maximize any system performance metric. Furthermore,

Fig. 1. Illustration of the three-sector site deployment with
L = 3 cells considered in the simulations.

these coefficients need to be scaled to satisfy the transmit
power constraints

1

K
tr
(
G`,TPEGH

`,TPE

)
= wT

`C`w` = P` (19)

where C` is a J` × J` matrix with elements given by

[C`]n,m =
1

K
tr

(
Ĥ`,`Ĥ`,`

K

)n+m+1

, n,m ∈ [0, J` − 1] .

(20)
We would like to pre-optimize the weights offline, thus the
weights should not depend on the instantaneous value of the
channel, but only its statistics. To this end, we substitute (19)
by its asymptotic approximation

wT
`C`w` = P` (21)

where
[
C`

]
n,m

= (−1)n+m+1

(n+m+1)!
1
K tr

(
T

(n+m+1)
`

)
.

In this paper, the performance metric is weighted max-
min fairness. In other words, we maximize the minimal
value of log2(1+γj,m)

νj,m
for some user-specific weights νj,m. If

we would like to mimic the performance of RZF, then νj,m
should be the rate that user m in cell j achieves asymptoti-
cally with RZF precoding. Using deterministic equivalents,
the corresponding optimization problem is

max
w1,...,wL

min
j∈[1,L]
m∈[1,K]

log2

(
1+

wH
j aj,maH

j,mwj∑L
`=1 wH

`B`,j,mw`−wH
j aj,maH

j,mwj

)
νj,m

subject to w`C`w` = P`, ` ∈ [1, L] . (22)

This problem is non-convex, but very similar to the multi-cast
beamforming problems analyzed in [12]. In particular, we can
instead solve the following tractable relaxed convex problem:
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Fig. 2. Comparison between conventional RZF precoding and
the proposed TPE precoding with different orders J = Jj ∀j.

max
W1,...,WL,ξ

ξ (23)

subject to W` � 0, tr
(
C`W`

)
= P`, ` ∈ [1, L]

aH
j,mWjaj,m∑L

`=1 tr B`,j,mW` − aH
j,mWjaj,m

≥ 2νj.mξ − 1, ∀j,m.

6. SIMULATION RESULTS

In this section, we consider the three-site sector in Fig. 1.
Each of the three BSs is equipped with an horizontal linear
array of M antennas. The radiation pattern of each antenna is

A(θ) = −min

(
12
(

θ
θ3dB

)2

, 30

)
dB, θ3dB = 70◦.

We assume that the UTs are divided into G = 2 groups as
described in [11]. The pathloss between UT m in the group g
and cell ` is selected as in [11]: PL(dj,m) = 1/

(
1+
(dj,m
d0

)δ)
,

where δ = 3.7 is the pathless exponent and d0 = 30 m is the
reference distance. We use the channel covariance model in
(3), but scale it by the pathloss and antenna radiation pattern.

For simplicity, we let the effective pilot SNR, ρtr, and all
the downlink SNRs, ρdl = P`

σ2 , be 15 dB. We compare the av-
erage user throughput, 1

KL

∑L
j=1

∑K
m=1 E[log2 (1 + γj,m)],

of the proposed TPE precoding with that of conventional RZF
precoding. The coefficients of TPE precoding are achieved
by solving the relaxed problem in (23) offline. Using Monte-
Carlo simulations, Fig. 2 shows the performance for K = 40
users and different number of antennas at each BS: M ∈
{80, 160, 240, 320, 400}. Unlike the single-cell case analyzed
in [1], where TPE precoding is merely an approximation of
RZF precoding, we see that TPE precoding achieves higher
user rates for all Jj ≥ 3 in the multi-cell case. This can
be attributed to the tractable offline optimization of the poly-
nomial coefficients which allows for a better coordination of
intra-cell and inter-cell interference, a feature which could not
be implemented for the RZF precoding.

7. CONCLUSION

In this paper, we generalize the low-complexity TPE precod-
ing family from [1] to multi-cell scenarios. In particular, we
derive deterministic equivalents for the asymptotic SINRs in
massive MIMO systems where the number of antennas and
users grow large with a fixed ratio. The most interesting
feature of these expressions is that they only depend on the
channel statistics and not on the instantaneous channel real-
izations. This enables us to optimize TPE precoding in an
offline manner. The performance of the proposed precoding
method is illustrated using simulations. We note that contrary
to the single-cell case, TPE precoding outperforms the RZF
precoding in terms of both complexity and throughput.
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