
SOURCE LOCALIZATION AND SIGNAL RECONSTRUCTION IN A REVERBERANT FIELD
USING THE FDTD METHOD
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ABSTRACT

Numerical methods applied to room acoustics are usually em-
ployed to predict the sound pressure at certain positions gen-
erated by a known source. In this paper the inverse problem
is studied: given a number of microphones placed in a room,
the sound pressure is known at these positions and this in-
formation may be used to perform a localization and signal
reconstruction of the sound source. The source is assumed
to be spatially sparse meaning it can be modeled as a point
source. The finite difference time domain method is used to
model the acoustics of a simple two dimensional square room
and its matrix formulation is presented. A two step method
is proposed. First a convex optimization problem is solved to
localize the source while exploiting its spatial sparsity. Once
its position is known the source signal can be reconstructed
by solving an overdetermined system of linear equations.

Index Terms— Room acoustics, FDTD, source localiza-
tion, source reconstruction, sparse approximation

1. INTRODUCTION

Source localization and signal reconstruction represent a chal-
lenge for researchers in many fields. One of the most popular
approaches for source localization is beamforming of which
robustness in a reverberant environment is still a topic of re-
search [1]. Source signal reconstruction is also a challenging
problem that has been studied in the context of dereverbera-
tion [2].
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In [3] a method was introduced for the estimation of a
static field using wireless sensor network measurements com-
bined with the finite element method (FEM). The source was
assumed to be a point source and its spatial sparsity was ex-
ploited. It was shown that the field could be accurately es-
timated by solving a convex optimization problem with `1-
norm regularization. A similar approach involving the wave
equation was proposed by other authors: here multi-channel
microphone measurements combined with greedy algorithms
were used to localize a sound source in a two-dimensional
room with a frequency domain approach using the FEM [4]
or with a time domain approach using finite differences [5].

In this paper a new method is presented that aims not only
to localize the sound source but also to reconstruct the source
signal once its position is determined. This is achieved by
solving an inverse problem which exploits the reverberation
of the room. In contrast to [3, 4] the finite difference time do-
main (FDTD) method is used to model the sound field. This
is a method which is less computationally expensive than the
FEM and which is a subject of intensive study [6, 7]. More-
over, convex optimization is employed instead of the greedy
algorithms used in [4, 5].

The paper is organized as follows: In Section 2 the FDTD
method is briefly reviewed. In Section 3 the matrix formula-
tion of the FDTD method is derived. In Section 4 the two step
method for source localization and signal reconstruction is de-
scribed. Finally, in Session 5 simulation results are shown.

2. THE FINITE DIFFERENCE TIME DOMAIN
METHOD

In this section the FDTD method is briefly introduced. The
sound field in a two-dimensional room can be described by
the following partial differential equation (PDE) [8]:

PDE
∂2p

∂x2
+
∂2p

∂y2
− 1

c2
∂2p

∂t2
= s on Ω× τ

BCs
∂p

∂t
= −cξ∇p · n on ∂Ω× τ

ICs p(x, y, t0) = p̃0 and
∂p

∂t
(x, y, t0) = ũ0 on Ω

(1)



Here, Ω ∈ R2 represents the spatial domain, which defines the
room geometry, τ represents the temporal domain, p(x, y, t)
and s(x, y, t) represent the sound pressure and the source sig-
nal, respectively, which are both functions p, s : Ω× τ → R,
with (x, y) ∈ Ω, t ∈ τ and Ω× τ ⊂ R3 and c is the speed of
sound. Notice that all the results presented in this paper can
be easily extended to the three-dimensional case.

The boundary conditions (BCs) are used to model acous-
tical properties of the walls which introduce damping in the
system. ξ defines the impedance of the walls and is assumed
here to be frequency independent. The operator ∇ is defined
as ( ∂

∂x ,
∂
∂y ) and n is the normal vector with respect to the

boundaries. The initial conditions (ICs) provide the initializa-
tion of the problem, both in the sound pressure and its time
derivative, namely the initial particle velocity ũ0. Notice that
ũ0 and p̃0 are defined in Ω ⊂ R2.

Finding the solution p of the problem (1) for a given s is
often a difficult task. Numerical approaches have to be used
and these usually consist in discretizing the domain Ω× τ in
order to reduce the problem to a linear system of equations. In
the FDTD method this discretization is performed in a simple
fashion: p and s are sampled uniformly in space and time,

p(x, y, t) = p(lX,mY, nT ) = pnl,m, (2)

where X and Y represent the spatial steps with respect to
the x and y axis respectively and T the time step. The same
notation is used for the discretized source term snl,m. In the
following X is set to be equal to Y .

The simplest FDTD scheme is obtained by approximating
the space and time second order derivatives as follows, e.g. for
the time derivative:

∂2p

∂t2
≈
pn+1
l,m − 2pnl,m + pn−1

l,m

T 2
. (3)

By substituting these approximations in the wave equation (1)
it is possible to write the standard leapfrog (SLF) scheme up-
date equation

pn+1
l,m = λ2c(pnl+1,m + pnl−1,m + pnl,m+1 + pnl,m−1)+

2(1− 2λ2c)pnl,m − pn−1
l,m + snl,m, (4)

where λc = cT/X is the Courant number.
The update equation (4) reveals the iterative nature of the

FDTD method. The sound pressure at time index n+1 is eval-
uated by using samples from the previous two time indices.
In particular, multiple spatial samples of the sound pressure
at time index n are employed; in the SLF scheme only the
axially neighboring samples are used.

The Courant number is an important parameter in terms
of stability and numerical errors [6]. For the SLF scheme
in a two-dimensional case the Courant number is chosen to
be 1/

√
2. Lower values increase the numerical errors while

higher values make the resulting solution unstable. This im-
plies that the resolution in time and space are inherently con-
nected by the maximum of the achievable Courant number.

Numerical errors in the FDTD method result in disper-
sion, i.e., waves travel with different speed depending on their
frequency and direction in space. The most common approach
to reduce numerical errors is to use a different scheme to dis-
cretize the derivatives of the wave equation. The general up-
date equation is

pn+1
l,m = d1

(
pnl+1,m + pnl−1,m + pnl,m+1 + pnl,m−1

)
+

d2(pnl+1,m+1 + pnl+1,m−1 + pnl−1,m+1 + pnl−1,m−1)+

d3p
n
l,m − pn−1

l,m + snl,m (5)

where the parameters d1, d2 and d3 define the scheme (e.g.,
for SLF d1 = 1/2 and d2 = d3 = 0). A collection of the
currently known stable schemes can be found in [6].

The update equation (5) must be modified at the bound-
aries, as it would require samples at grid points that lie outside
the domain. These points are known as ghost points and can
be used to model the BCs in (1). The modified update equa-
tion that has to be used for the boundary grid points is then
given (e.g. for a right wall) by

(1 + λc/ξx) pn+1
l,m = d1(2pnl−1,m + pnl,m+1 + pnl,m−1)

2d2(pnl−1,m+1 + pnl−1,m−1) + d3p
n
l,m

− (1− λc/ξx) pn−1
l,m . (6)

Note that when a corner is present more grid points need to be
eliminated. The update equation (5) can be further modified to
include frequency-dependent boundaries using a digital filter
at each boundary point [6].

Finally, initial conditions must be specified as well. The
first-order derivative is approximated with a finite difference,

p+1
l,m − p

−1
l,m

2T
= ũ0l,m, (7)

and p0l,m = p̃0l,m.

3. MATRIX FORMULATION OF FDTD

In Section 2 it has been shown that the wave equation can be
converted into a set of linear equations with FDTD. Usually
this linear system is solved iteratively. However, since this
set of equations will be used as a constraint in an optimiza-
tion problem, it is more convenient to write it in the following
manner:

Bp = s (8)

where B ∈ RN2
X(NT+2)×N2

X(NT+2) is a matrix contain-
ing geometry and boundaries information and p and s ∈
RN2

X(NT+2) are vectors containing respectively sound pres-
sure and source signal samples at all positions and time



samples. Here, NX indicates the number of spatial samples
along one axis (in the following it is assumed this is the same
for the x and y axis) and NT + 2 is the number of time
samples plus 2 initial conditions.

The vector p is defined as follows:

p = [pT
−1,p

T
0 , . . .p

T
NT

]T , (9)

where pn is the vector containing all the sound pressure sam-
ples at time indices n. The vector s has the same structure but
includes also the initial conditions

s = [ũT
0 , p̃

T
0 , s

T
1 , . . . s

T
NT

]T . (10)

The update equation (5) can be written as:

pn+1
l,m − pT

nal,m + pn−1
l,m = snl,m (11)

where al,m ∈ RN2
X is a vector that selects the samples at

position (l,m) and its neighbor points. Writing pn as

pn = [...

NX︷ ︸︸ ︷
pnl,m−1, p

n
l+1,m−1... p

n
l,m, p

n
l+1,m...]

T , (12)

it can be seen that pnl,m−1 is NX samples away from pnl,m,
and so if pn[i] = pnl,m then pn[i+NX ] = pnl,m+1 and pn[i−
NX ] = pnl,m−1. Hence al,m can be defined as:

al,m = [...

NX︷ ︸︸ ︷
d2, d1, d2... d2,

(l,m)︷︸︸︷
d3 , d2

NX︷ ︸︸ ︷
...d2, d1, d2 ...]

T . (13)

where dots represent zero values.
Now the matrix A ∈ RN2

X×N2
X can be defined as:

A = [a0,0,a1,0, . . .aNX−1,NX
,aNX ,NX

]. (14)

This matrix consists of 9 diagonals. Equation (5) may be
rewritten as

Ipn+1 −Apn + Ipn−1 = sn (15)

where I is the identity matrix.
The initial conditions are defined in the first 2N2

X samples
of the vector s, see (10). For the initial particle velocity, the
firstN2

X samples must satisfy (7) which in vector notation can
be written as (Ip+1 − Ip−1)/2T = ũ0 and similarly for the
initial sound pressure Ip0 = p̃0.

As for the boundary conditions, the above equations have
to be modified according to (6) and similar equations for other
walls and corners. Due to these modifications, the A matrix
will have zero elements in the diagonals since the ghost points
must be removed. Moreover, the boundary samples pn+1 and
pn−1 are multiplied by a constant representing the impedance
and hence the identity matrices in (15) have to be slightly
modified. The FDTD matrix can finally be written as

B =


I/2T −I/2T

I
I+1 −A I−1

. . . . . . . . .
I+1 −A I−1

 , (16)

where I+1 is an identity matrix multiplied by the coefficients
(1 + λc/ξ) in each row that belongs to a boundary sample
(notice that the coefficient is different for corners) and I−1 is
similarly defined with coefficients (1 − λc/ξ). Note that B
can become a huge matrix for high spatial/temporal sampling
rates. However, it has a sparse multi-diagonal structure which
allows an efficient storage and computation.

4. SOURCE LOCALIZATION AND
RECONSTRUCTION

4.1. Reconstruction of an impulse

In the following it will be assumed that the sound field can
be simulated correctly at each position of the room, i.e. that
FDTD returns an accurate physical model. Numerical meth-
ods are usually employed to predict the sound pressure from
a known source signal s. Here the inverse problem is consid-
ered: the sound pressure is known at a subset of the FDTD
grid points where microphones are present, hence p is par-
tially known and s must be estimated.

A convex optimization problem can be formulated as fol-
lows [3],

min
p,s

K∑
i=1

‖Dip− p̂i‖2+λ‖Cs‖1

s.t. Bp = s

(17)

where K is the number of microphones, p̂i is a vector con-
taining the signal measured in the microphone i and Di is a
selection matrix that selects the samples at the microphone
position in the vector p. The equality constraints correspond
to the FDTD method. The cost function consists of two terms:
The squared error norm forces the sound pressure represented
by p to be close to the sound pressure of the measurements in
the microphones. The term λ‖Cs‖1 is a regularisation term
inducing sparsity in the source signal vector. This term is cru-
cial for the problem to be solvable since the FDTD system
of linear equations is heavily underdetermined. λ is a regu-
larization parameter that can increase the importance of the
sparsity-inducing term at the cost of a decreased accuracy be-
tween measured and simulated sound pressure values. C is
a selection matrix that removes the first 2N2

X samples cor-
responding to the initial conditions, where the source signal
vector is no longer sparse but can be dense.

By imposing sparsity in such a manner, the source signal
snl,m is enforced to be non-zero for only few indices l, m and
n. Hence the regularization encourages solutions with impul-
sive sources. Simulations show that when the source signal is
indeed an impulse in both time and space, reconstruction is
possible even with only one microphone. In the next subsec-
tions the more interesting case of reconstructing and localiz-
ing a more general source signal will be studied.



4.2. Source localization

When a general point source signal is used instead of an im-
pulse, problem (17) does not allow source signal reconstruc-
tion to be performed but it can achieve a correct source local-
ization.

In fact, if the estimated source signal, without the ICs part,
is squared and summed over time for all l,m, its maximum
value over l, m is found to reveal a good estimate of the posi-
tion [ls,ms] of the source

[ls,ms] = argmax
l,m

NT∑
n=1

(snl,m)2. (18)

4.3. Reconstruction with known position

It is possible to exploit the estimated source position to per-
form the source signal reconstruction. The source signal vec-
tor s may be written as

s = FsT (19)

where sT ∈ RNT is a vector containing the time signal at
the estimated source position and F ∈ RN2

X(NT+2)×NT is an
expansion matrix. Let k be the index of the estimated source
position corresponding to [ls,ms] in the vectors si for i =
1, . . . , NT . The upper 2N2

X rows of F will have only zeros,
since these correspond to the initial conditions ũ0 and p̃0 that
are not present in sT . The next N2

X rows correspond to s1
and have only one non-zero element in position [k+2N2

X , 1].
Then the next N2

X rows have a 1 in position [k+ 3N2
X , 2] and

so on until the second index reaches NT .
The sound pressure vector can then be written as:

p = ZsT (20)

where Z = B−1F ∈ RN2
X(NT+2)×NT .

The vector sT can thus be obtained by simply solving the
system:

DZsT = Dp (21)

which is always overdetermined. Here D represent the selec-
tion matrix that selects all the rows where microphones mea-
surements are present.

4.4. Reconstruction without initial conditions

It is also possible to create an expansion matrix that recon-
structs the ICs. The matrix F then has to be modified in the
following manner:

FIC =

 I2N2
X×2N2

X
|
| F

0NTN2
X×2N2

X
|

 . (22)

FIC then becomes a (NT + 2)N2
X × (2N2

X +NT ) matrix and
the signal can be reconstructed by solving (21), which is an

overdetermined set of equations only if KNT ≥ 2N2
X +NT

since now DZ ∈ RKNT×(2N2
X+NT ). This problem manages

to partially reconstruct the initial conditions. As simulation
results in Section 5 will show, the source signal can be recon-
structed with high accuracy, even though the first few samples
should be discarded since these are usually corrupted by the
inaccurate reconstruction of the initial conditions.

Being able to have a method that does not need the initial
conditions means that the signal can be reconstructed using
shorter successive time windows. This reduces the numeri-
cal cost since the matrices that have to be computed become
smaller.

5. SIMULATION RESULTS

An FDTD simulation is performed in a 1 m2 2D room using
a spatial resolution of NX = 10 and NT = 500 time sam-
ples, meaning a sampling frequency of fS = 4.4 kHz, with
the SLF scheme. The impedance is chosen to be ξ = 200,
corresponding to a reverberation time of T60 = 1.2 s, and ini-
tial conditions are set to zero. The system is excited using a
physically constrained source [7] of filtered white noise, from
20 to 600 Hz. The K microphone signals are then simulated
by adding Gaussian white noise (GWN) to the FDTD field
values at the microphone positions. The source localization
problem (17) is then solved with CVX [9]. Here the parameter
λ is set to 10−4 meaning sparsity is not strongly enforced.

Figure 1 shows the results of Monte Carlo simulations.
For each point in the graph 100 simulations were run us-
ing random positions of the microphones and source. The
figures on top show the probability of correct localization
(i.e., finding the correct grid point) while the ones on the bot-
tom show the mean squared error (MSE) between the orig-
inal and reconstructed signal. Both the mean and median of
the MC simulations for the MSE are shown in order to em-
phasize the fact that few outliers significantly decrease the
average of the MSE. The plots on the left show simulation re-
sults for different numbers of microphones. Here, GWN was
added to each microphone measurement with 40 dB signal
to noise ration (SNR). Localization of the source works effi-
ciently with only three microphones but at least 5 are needed
to perform an accurate signal reconstruction. The graphs on
the middle show results for different values of SNR, using
5 microphones. Again, the performance of the localization is
somewhat better than the signal reconstruction performance:
at 20 dB SNR the source is localized correctly with a 98%
probability while 40 dB SNR is needed for good signal re-
construction. Finally, the plots on the right show the behav-
ior when ICs are non-zero. The initial particle velocity and
initial sound pressure are set to ũ0l,m = sin(2π2l/NX) and
p̃0l,m = −10−3 sin(2πm/NX). The field that these ICs gen-
erate is then added to the one generated by the sound source
and multiplied by a constant. In fact here simulations are re-
peated for different values of signal to initial conditions ratio
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Fig. 1: Localization of source in probability and reconstruction error for different numbers of microphones, different values of SNR and SICR.

(SICR), i.e. the ratio between the sound pressure power due to
the sound source and the sound pressure power due to the ICs
recorded by the microphones. In these simulations GWN was
added in each microphone measurement corresponding to a
SNR of 60 dB. The ICs can be thought as the source of noise
coming from the past. This type of noise can be removed effi-
ciently when the ICs can be estimated correctly. The resulting
localization and signal reconstruction performance is much
more robust when most of the noise is coming from the pre-
vious sound field created by the ICs. Good accuracy can be
achieved even at 0 dB SICR, meaning that the sound field due
to the sound source and the one due to the ICs have the same
magnitude.

6. CONCLUSIONS

A new two step method for localization and signal reconstruc-
tion using the FDTD method has been proposed. First the
sound source is localized by solving a convex optimization
problem that exploits spatial sparsity and then signal recon-
struction is achieved by solving an overdetermined system of
linear equations. Simulations have shown that the method can
be robust against noise in particular when this is coming from
a past sound field that can be partially estimated.

The main issue for the applicability of the proposed
method in a real world scenario is that the geometry and
boundary conditions of the room are assumed to be known.
Matching room acoustic properties with simulations can be a
difficult task especially due to the modeling of the boundary
conditions. Moreover, the computational cost of the FDTD
method and the dispersion error it suffers can be problematic.
These errors can be removed or reduced by either using very
high resolutions, which would inevitably lead to a huge in-
crease of the computational cost, or by limiting the method to
the low frequency range.
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