
ADAPTIVE RANDOMIZED COORDINATE DESCENT FOR SOLVING SPARSE SYSTEMS

Alexandru Onose∗, Bogdan Dumitrescu∗†

∗ Department of Signal Processing

Tampere University of Technology

PO BOX 553, 33101, Tampere, Finland

e-mails: firstname.lastname@tut.fi

† Department of Automatic Control and Computers

University Politehnica of Bucharest
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ABSTRACT

Randomized coordinate descent (RCD), attractive for its ro-

bustness and ability to cope with large scale problems, is

here investigated for the first time in an adaptive context.

We present an RCD adaptive algorithm for finding sparse

least-squares solutions to linear systems, in particular for FIR

channel identification. The algorithm has low and tunable

complexity and, as a special feature, adapts the probabilities

with which the coordinates are chosen at each time moment.

We show through simulation that the algorithm has track-

ing properties near those of the best current methods and

investigate the trade-offs in the choices of the parameters.

Index Terms— adaptive algorithm, channel identifica-

tion, sparse filter, least squares, coordinate descent, random-

ization

1. INTRODUCTION

Randomized coordinate descent (RCD) was recently pro-

posed and analyzed in [1, 2] for solving large optimization

problems. It was shown that not only RCD has convergence

speed guaranteed under general conditions (unlike determin-

istic versions like cyclic coordinate descent), but also it may

have very low complexity.

We propose here RCD for a particular problem—finding

a sparse least-squares solution to a linear system. However,

the context is different than in [1], since we want an adap-

tive solution, not a batch one. For linear least-squares prob-

lems, cyclic coordinate descent converges, but our interest is

in an adaptive, low complexity method where only few co-

ordinates are chosen for descent at each time moment. The

choice should be done cheaply, i.e. without looking at all co-

ordinates. From this viewpoint, RCD is an ideal candidate.

Previous adaptive algorithms for sparse systems [3–7]

were all deterministic and based on various ideas like using

ℓ1 regularization, greedy search, projection on convex sets.

Coordinate descent was used for adaptively finding sparse

solutions to linear systems in several papers [3, 8–10], using

different criteria and choices of the coordinates on which

descent was made (cyclic sweeps being the most popular).

Our contribution here is to propose a first adaptive RCD

algorithm, minimizing directly a least-squares criterion in or-

der to find a sparse solution to a linear system. A main inno-

vation is in the adaptation of the probabilities that guide the

RCD process, favoring the coordinates that are more likely

to correspond to nonzero coefficients. Adapting probabili-

ties during the RCD process is mentioned in [2] as a possibil-

ity, by re-evaluating the bounds on component-wise gradients

(which define the probabilities). In the very recent work [11],

an explicit method for changing the probabilities is given, by

increasing them when the criterion decrease is larger than av-

erage; however, the context and the adaptation rule are differ-

ent. For detecting the sparsity level, we rely on the Predictive

Least Squares (PLS) criterion [12].

Section 2 presents the principles and the details of our

algorithm. In section 3, we give evidence that our algorithm

has similar behavior with previous algorithms, despite having

a clearly lower complexity.

2. ADAPTIVE RANDOMIZED COORDINATE

DESCENT

Our prototype problem is FIR channel identification. The

channel model is

N−1
∑

i=0

hi(t)u(t− i) = d(t) + η(t), (1)

where u(t) is the current input, d(t) is the (desired) output

and η(t) is the noise. The channel model length is N and the

coefficients are hi(t), possibly variable in time. We assume

that the vector of coefficients is sparse, i.e. hi(t) 6= 0 only for

a small number Lt of indices i.
Let us denote

α
(t) = [u(t) u(t− 1) . . . u(t−N + 1)]

T
. (2)

We use an exponential window with forgetting factor λ and

define

A
(t) =

[
√
λA(t−1)

α
(t)T

]

, b
(t) =

[ √
λb(t−1)

d(t)

]

. (3)



Assuming that η(t) is white noise, the optimal coefficients

estimate x
(t) can be found by minimizing the least-squares

criterion

J(t) = ‖b(t) −A
(t)
x
(t)‖2 (4)

with a sparsity level that has to be detected.

2.1. Algorithm essentials

In principle, the ingredients of an adaptive RCD algorithm are

simple. At the current time t, the main steps are the following.

1. Random coordinate selection. We need some probabil-

ities πi, i = 0 : N−1, that are used to choose the coordinates,

with
∑

N−1
i=0 πi = 1. (5)

At each time moment, we randomly choose R coordinates,

selected sequentially from 0 : N−1 with the above probabili-

ties (hence, repetitions are allowed); we assume for simplicity

that R is fixed, but it can be as well variable.

2. Descent. The chosen coordinates are used to perform

optimal descent steps. Let us assume that, at time t, we have

a solution with M nonzero coefficients, whose indices belong

to a set C. The residual corresponding to this solution is

r = b−∑
i∈C

xiai, (6)

where ai is the i-th column of the matrix A. (To alleviate

the notation, we drop the index t, implicitly referring to the

current time moment.) An optimal descent step on coordinate

i consists of the update

xi ← xi +
a
T

i
r

‖ai‖2
=

a
T

i
(r + xiai)

‖ai‖2
. (7)

These operations are repeated R times, using the R randomly

chosen coordinates. The residual should be updated after each

modification of a coordinate; however, the implementation

will avoid this update and implicitly recompute (6).

3. Selection of nonzero coefficients. Finally, since we

want a sparse solution, we have to decide which coefficients

are nonzero, the decision coming to effect at the next time

moment. To this purpose we use an ordering of the coordi-

nates, to be explained later, and the PLS criterion, computed

for solutions formed of the first m coefficients, for all val-

ues m = 1 : M . Denote L the sparsity level for which the

PLS criterion is minimum and L̂t the sparsity level estimated

for the solution at time t. Since we have noticed that small

changes lead to better performance, we set

L̂t+1 =







L̂t + 1, if L > L̂t

L̂t, if L = L̂t

L̂t − 1, if L < L̂t

(8)

Moreover, the number of considered coefficients is taken as

M = L̂t +∆, where ∆ is a small constant, e.g. ∆ = 5; this

ensures that we have enough candidates for the PLS criterion,

covering the case where the sparsity levels increases. This

is, excepting the way the coordinates are ordered, exactly the

sparsity detection mechanism employed in [9].

The main drive for an RCD algorithm is the possibility

of controlling the complexity through the number R, without

affecting significantly the convergence properties. We aim to

obtain an algorithm whose complexity depends rather on R
than on N , as it was the case in [9] or other previous papers

[3, 4].

2.2. Adapting the probabilities

The key to a successful RCD algorithm is in the choice of the

probabilities πi. In [1, 2], where sparsity is not an issue, they

depend on the matrix A and they are constant. Since we seek

a sparse solution, it is natural to assign larger probabilities to

the coordinates with nonzero coefficients, because only they

lead to a meaningful decrease of the criterion (4). Moreover,

since the solution and its support may vary in time, the prob-

abilities should be adapted in time, taking into account the

latest information.

Since the matching pursuit (MP) criterion is relevant for

the significance of a coordinate in the sparse solution, we pro-

pose to use it as well as a measure of the probability for draw-

ing coordinate i. The MP criterion, computed for a coordinate

i that is removed from the solution (but all other coefficients

remain), has the form

pi =
|aT

i
(r + xiai)|2
‖ai‖2

, (9)

where r is the residual from (6). The value pi represents the

decrease of the criterion (4) when the coordinate i is intro-

duced in the solution. As a general rule, the values pi are large

for nonzero coefficients xi and small for zero coefficients.

We generate R random coordinates according to the prob-

abilities πi, as discussed in section 2.1, obtaining a sequence

K of indices. To update the probabilities, we use a linear

transformation of the values (9):

πi ← pmin +
pi

∑

k∈K
pk

(

∑

k∈K

πk −Rpmin

)

, i ∈ K. (10)

This relation ensures that the scaling (5) is preserved. The

value pmin represents the minimum value that a probability

πi can take. Such a value is necessary to ensure that each

coordinate is drawn at not too long time intervals, even though

the matching pursuit criterion (9) might say that its effect in

the solution is negligible and so most likely that coefficient

is zero. This is a precaution against sudden changes of the

support. The probabilities (10) will be used at time t+1. The

values πi, i 6∈ K, remain unchanged.

Finally, the probabilities πi are ordered decreasingly. Due

to the connection with the decrease of the criterion (4), the

large probabilities are more likely to correspond to nonzero



coefficients. This order is used when building solutions with

increasing sparsity level for the PLS criterion.

2.3. The adaptive RCD algorithm

The adaptive randomized coordinate descent (A-RCD) is

listed in Alg. 1. We give here some explanations on the main

operations.

Since the matrix A and the vectors b and r are indefinitely

long, we store instead the products Φ = A
T
A, Ψ = A

T
b.

At each time moment, they are updated using the new data, in

(11), see step 1 of the algorithm.

As mentioned before (6), C is the set of coordinates cur-

rently considered for building the sparse solution. This set is

used for computing the residual r used for finding a new co-

efficient value in (7) and for computing the MP criterion (9).

Steps 3.1–3.3 implement these relations in terms of the prod-

ucts Φ and Ψ. (This is different from [9], where updates were

used instead of recomputations of the residual.)

Steps 4 and 5 handle the probabilities as explained in sec-

tion 2.2.

The size of the set C (to be used at the next time moment),

is L̂t + ∆, where L̂t is the estimated sparsity level of the

solution, which means that the L̂t coordinates that have the

largest values of the probabilities π form the sparse solution

x. As explained in section 2.1, the value L̂t is computed with

the help of the PLS criterion applied to sparse solutions of

lengths from 1 to M = L̂t+∆, built with the coordinates with

higher probabilities. Steps 6–8 contain the above operations.

Finally, since only the first M coordinates are deemed sig-

nificant, the other coefficients should be forced to zero. This

is done in step 9.

We have implemented A-RCD using the double residual

trick proposed in [9]. Let A be the set of active coordinates,

namely the first L̂t that define the solution. If i ∈ A, we

compute the new coefficient xi as in (7), but using a residual

(6) built with indices from A instead of C. This allows better

values for the active coefficients, since the coefficients from

C \A, which are not considered significant, are not used; they

are useful only for building the PLS criterion. For the values

of the MP criterion (9), it is not so important what residual is

used. Working with two residuals does not require more op-

erations, since the value ρ from step 3.1 can be computed in

two stages; first the indices from A are used, then this inter-

mediate ρ is employed in step 3.2, then the remaining indices

(from C \ A) are used for getting the final ρ.

2.4. Complexity

The only operation that has an O(N) complexity is the prod-

uct update in Step 1. Since a new row (2) of A is obtained by

shifts, the updates (11) need not O(N2) operations, but only

O(N).
Generating R random indices can be done in O(R logN)

operations, by building a balanced tree of cumulated proba-

Alg. 1 (A-RCD: Adaptive randomized coordinate
descent)

Parameters: R—number of random coordinates, ∆—extra

length for PLS criterion, pmin—minimum probability of a

coordinate

Initialization: πi = 1/N , i = 0 : N − 1, C = ∅, L̂t = 0

At each time moment t, do

1 Update scalar products with current data

Φ← λΦ+αα
T

Ψ← λΨ+ d(t)α
(11)

2 Generate setK of R random indices, using probabilities π

3 for i ∈ K

3.1 Compute ρ = Ψi −
∑

j∈C\{i} xjΦij

3.2 Compute new coefficient (7): if i ∈ C, xi = ρ/Φii

3.3 Compute MP criterion (9): pi = ρ2/Φii

4 Update probabilities according to (10)

5 Order indices in decreasing order of π

6 Compute the PLS criterion for the first L̂t +∆ indices

7 Update L̂t like in (8), with L given by the minimum PLS

8 Put C as the set of first L̂t +∆ indices

9 Set xi = 0, for all i ∈ K \ C

bilities. Keeping π sorted as required by step 5 needs also

O(R logN) operations.

The computation of the coefficients and MP criterion in

step 3 can be done with complexity O(RM). The probability

update in step 4 is only O(R). Finally, the computation of the

PLS criterion is cheap, requiring O(M) operations.

So, the overall complexity is O(N) +O(RM). Although

it still depends on N , the complexity is clearly lower than

for previous algorithms for the same least-squares problem

[3–7, 9], where it was at least O(MN), if not O(N2).

3. SIMULATIONS

We validate the performance of the randomized coordinate

descent algorithm for a sparse FIR channel identification

problem (1). We estimate the sparsity and the coefficient

values of an Lt-sparse filter of length N = 200 for a variable

and a constant channel, respectively. In the first case the

coefficient variation is sinusoidal, each nonzero coefficient

described by

hi(t) = ci cos(2πft+ φi). (12)

The nonzero positions i are chosen randomly with the ampli-

tude/constant ci and the initial phase φi uniformly distributed



in [0.05, 1] and [0, 2π], respectively. The parameter f govern-

ing the variation speed in (12) is set to 0.0002. For the con-

stant channel, we put f = 0, φi = 0 in (12). The forgetting

factor is λ = 0.96 for the variable channel and λ = 0.99 for

the constant one. The filter is normed such that the average

norm over all time is 1.

The input d(t) is normally distributed according to

N (0, 1) and the output is corrupted by an additive Gaus-

sian noise with σ2 = 0.01. We measure the performance of

the algorithms in terms of the coefficient mean square error

MSE(t) = E{‖h− x‖22}, (13)

where x is the current estimate of h. It is estimated by aver-

aging data from 1000 test runs.

The algorithms used for comparison are: RLS-SI, the

sparsity informed RLS algorithm with prior knowledge of

the position and number of coefficients, showing the best

attainable performance; DCD-AMP, the algorithm from [9]

that estimates the sparsity level using the PLS criterion with

∆ = 5 (this algorithm has been shown to be better than or at

least comparable with those from [3, 4, 7]); A-RCD, the ran-

domized coordinate descent algorithm presented herein, also

with ∆ = 5; A-RCD-SI, the same algorithm, but knowing

the true sparsity level (so, PLS is not used).

In Fig. 1 we present three plots with the evolution of the

MSE in time. The upper figure compares the evolution of the

randomized algorithms with that of the deterministic DCD-

AMP algorithm from [9]. The A-RCD algorithm converges

slightly slower than DCD-AMP towards an almost identical

stationary MSE. If the sparsity level is known a priori, the

MSE performance approaches that of RLS-SI. The test has

a sudden change in the coefficient positions to exemplify the

ability to track variations in the support. The convergence

speed is slower after the change because for large λ the past

data are forgotten very slowly.

The middle figure contains the evolution of the A-RCD

algorithm for different values of the parameter R that gov-

erns the number of random descent steps. More descent steps

improve the convergence speed, but a larger R also increases

the numerical complexity. Thus, R is a compromise between

convergence speed and numerical complexity.

The last plot in Fig. 1 contains the evolution of the MSE

for different values of the minimum probability pmin. Choos-

ing pmin too small produces a slower convergence speed since

some nonzero coefficients may be neglected a long time after

a small value of the MP criterion (9), not unlikely at small

t. For larger pmin, the convergence speeds become similar.

However, if pmin is too large (pmin = 0.9/N for instance,

which makes π almost uniform), the performance degrades

because the coefficients on the support and outside it are al-

most equally favored. So, the algorithm is relatively robust to

the choice of pmin and the range of convenient values ensures

also good tracking in case of support variations.
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Fig. 1. MSE for a constant channel with Lt = 5. The param-

eters are pmin = 0.7/N and R = 20 if not explicitly stated.

Similar tests are performed for a sparsity level Lt = 15
for both the constant and the variable channels in Fig. 2 and

Fig. 3, respectively. The performance remains similar for the

larger sparsity and the algorithm is able to track slow varying

channels.

4. CONCLUSIONS AND FUTURE WORK

We have proposed an adaptive randomized coordinate de-

scent algorithm that adaptively updates the coordinate selec-

tion probabilities based on a MP-like criterion. It gives good

performance despite its low complexity. Through extensive

simulations, we have shown that the algorithm converges to-

wards the optimal least squares solution and that the number

R of descent steps governs the convergence speed.

A first glance convergence analysis, not presented here

due to space limitations, suggests that the speed is inverse pro-

portional with the number of descent steps. Further work will

be dedicated to a thorough analytical proof of convergence.

REFERENCES

[1] D. Leventhal and A. S. Lewis, “Randomized Methods

for Linear Constraints: Convergence Rates and Condi-



0 200 400 600 800 1000 1200

10
−2

10
0

t (time)

M
S
E

 

 
RLS−SI
DCD−AMP
A−RCD−SI
A−RCD

0 100 200 300 400 500 600

10
−2

10
0

t (time)

M
S
E

 

 
A−RCD , R = 20
A−RCD , R = 25
A−RCD , R = 30
A−RCD , R = 35
A−RCD , R = 40

0 100 200 300 400 500 600

10
−2

10
0

t (time)

M
S
E

 

 

A−RCD , pmin = 0.1/N
A−RCD , pmin = 0.3/N
A−RCD , pmin = 0.5/N
A−RCD , pmin = 0.7/N
A−RCD , pmin = 0.9/N

Fig. 2. MSE for a constant channel with Lt = 15. The param-

eters are pmin = 0.7/N and R = 30 if not explicitly stated.

tioning,” Math. Oper. Res., vol. 35, no. 3, pp. 641–654,

Aug. 2010.

[2] Yu. Nesterov, “Efficiency of coordinate descent meth-

ods on huge scale optimization problems,” SIAM J. Op-

tim., vol. 22, no. 2, pp. 341–362, 2012.

[3] D. Angelosante, J.A. Bazerque, and G.B. Giannakis,

“Online Adaptive Estimation of Sparse Signals: Where

RLS Meets the ℓ1-Norm,” IEEE Trans. Signal Proc.,

vol. 58, no. 7, pp. 3436–3447, July 2010.

[4] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS:

The Sparse RLS Algorithm,” IEEE Trans. Signal Proc.,

vol. 58, no. 8, pp. 4013–4025, Aug. 2010.

[5] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online

Sparse System Identification and Signal Reconstruc-

tion Using Projections Onto Weighted ℓ1 Balls,” IEEE

Trans. Signal Proc., vol. 59, no. 3, pp. 936–952, Mar.

2011.

[6] N. Kalouptsidis, G. Mileounis, B. Babadi, and

V. Tarokh, “Adaptive Algorithms for Sparse System

Identification,” Signal Proc., vol. 91, pp. 1910–1919,

2011.

[7] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş,
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