
DETERMINATION OF RETINAL NETWORK SKELETON THROUGH MATHEMATICAL
MORPHOLOGY
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Universitat Politècnica de València, I3BH/LabHuman, Camino de Vera s/n, 46022 Valencia, Spain
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ABSTRACT
This paper describes a new approach to determine vas-

cular skeleton in retinal images. This approach is based on
mathematical morphology along with curvature evaluation.
In particular, a variant of the watershed transformation, the
stochastic watershed, is applied to extract the vessel center-
line. Its goal is to obtain directly the skeleton of the retinal
tree avoiding a previous stage of vessel segmentation in or-
der to reduce the dependence between stages and the compu-
tational cost. Experimental results show qualitative improve-
ments if the proposed method is compared with other state-of-
the-art algorithms, above all on pathological images. There-
fore, the result of this work is an efficient and effective vessel
centerline extraction algorithm and can be useful for further
applications and image-aided diagnosis systems.

Index Terms— Retinal vascular skeleton, vessel cen-
terline, mathematical morphology, curvature evaluation,
stochastic watershed

1. INTRODUCTION

Retinal vasculature is able to indicate the status of other ves-
sels of the human body. Classically, its study is included in
the standard screening of any patients with diseases in which
the vessels may be altered inasmuch as it is a non-invasive or
minimally invasive procedure. Changes in retinal vessel fea-
tures can be precursors of serious diseases such as cardiovas-
cular diseases and stroke, among others. An analysis of reti-
nal vessel features can assist in the detection of these changes
and can allow the patient to take actions in early stages of the
disease.

In general, the detection of retinal vascular network is
necessary before analysing vessel features. The most com-
mon approach in the literature is a first stage of vessel seg-
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mentation, then the skeletonization of the detected vessels
and finally the analysis of different features on the vascular
skeleton as vessel calibre or bifurcation angles. The major
drawback of this approach is the dependence of the differ-
ent stages with the previous ones in addition to computational
cost. Based on these facts, this paper is focused on obtaining
the retinal skeleton in a direct way avoiding the segmentation
stage. Its goal is to reduce the number of necessary steps in
fundus image processing. As a consequence, this would also
reduce the dependency of previous stages. Specifically, the
method proposed for this purpose is mainly based on math-
ematical morphology along with curvature evaluation. Two
main steps are involved: in the first step, the principal curva-
ture is calculated on the retinal image. In the second step, a
variant of the watershed transformation, the stochastic water-
shed, is applied to extract the vascular skeleton.

Notwithstanding most of the state-of-the-art methods look
for detecting all vessel pixels [1], there are also some attempts
focused on finding the vessel skeleton, or in other words, the
vessel centerline. The work of Chen et al. is based on shortest
path connection [2], Sofka and Stewart on the use of matched
filters [3], Wu and Derwent on ridge descriptors [4] and Wal-
ter and Klein and Bessaid et al. on the application of water-
shed transformation [5, 6] but none of them is based on the
use of stochastic watershed.

The rest of the paper is organised as follows: in Section 2
the main stages of the proposed method are described, detail-
ing the morphological operators used, the stochastic water-
shed transformation and the centerline detection algorithm.
Section 3 shows the experimental results obtained on images
belonging to two public databases, and a comparison with
other methods from the literature. Finally, Section 4 provides
conclusions and some future work lines.

2. METHOD

2.1. Morphological operators

Mathematical morphology is a non-linear image processing
methodology, based on minimum and maximum operations,



which can be used to extract relevant structures of an image
f [7]. This is achieved by probing the image with another
known shape B called structuring element (SE). The result of
the single operation also depends on the choice of B. The
two basic morphological operators are: dilation (δB(f)) and
erosion (εB(f)). Their purpose is to expand light or dark re-
gions, respectively, according to the size and shape of the SE.
Those elementary operations can be combined to obtain a set
of basic filters: opening (γB(f)) and closing (ϕB(f)). Light
or dark structures are respectively filtered out from the image
by these operators regarding the SE chosen.

The method proposed in this paper applies these basic fil-
ters directly, or uses them to derive more complex operators,
such as a dual top-hat (ρB(f) = ϕB(f) − f ) or geodesic
transformations. The geodesic dilation is the iterative unitary
dilation of an image f (marker) which is contained within
an image g (reference), δ(n)g (f) = δ

(1)
g δ

(n−1)
g (f), being

δ
(1)
g (f) = δB(f) ∧ g. The reconstruction by dilation is the

successive geodesic dilation of f regarding g up to idem-
potence, γrec(g, f) = δ

(i)
g (f), so that δ(i)g (f) = δ

(i+1)
g (f).

Using the geodesic reconstruction, a close-hole operator can
also be defined. For a grey-scale image, it is considered a hole
any set of connected points surrounded by connected com-
ponents of value strictly greater than the hole values. This
operator fills all holes in an image f that do not touch the im-
age boundary f∂ (used as marker): ψch(f) = [γrec(f c, f∂)]c,
where f c is the complement image (i.e., the negative).

2.2. Stochastic watershed transformation

Watershed transformation is a segmentation technique for
gray-scale images [8]. This algorithm is a powerful segmen-
tation tool whenever the minima of the image represent the
objects of interest and the maxima are the separation bound-
aries between objects. Due to this fact, the input image of
this method is usually a gradient image %(f). However, one
problem of this technique is the over-segmentation, which is
caused by the existence of numerous local minima in the im-
age normally due to the presence of noise. One solution to this
problem is using marker-controlled watershed, WS(%)fmrk

,
in which the markers fmrk artificially impose the minima of
the input image. Nevertheless the controversial issue consists
in determining fmrk for each region of interest. Note that the
use of a limited number of markers along with the complex
morphology of the retinal vascular network can also cause
that some parts of it are not detected (sub-segmentation).
Therefore, the choice of the correct markers is crucial for the
effectiveness and robustness of the algorithm.

The stochastic watershed, a watershed transformation
variant, is used to solve the sub-segmentation conflict [9]. In
this transformation, a given number M of marker-controlled-
watershed realizations are performed selecting N random
markers to estimate a probability density function (pdf ) of
image contours and filter out non significant fluctuations.

Obtaining a pdf of the contours of the watershed regions
facilitates the final segmentation, providing robustness and
reliability since the arbitrariness in choosing the markers
is avoided. Afterwards, it is necessary to perform a last
marker-controlled watershed on the pdf obtained to obtain a
final result. This type of watershed works better than other
marker-based watershed transformations used previously in
the literature.

2.3. Algorithm

This paper is focused on obtaining directly the skeleton of the
retinal vascular tree instead of obtaining it after a complete
segmentation of retinal vessels. As mentioned above, the pro-
posed method is mainly based on mathematical morphology
along with curvature evaluation. Its main stages are included
in the flowchart shown in Fig. 1 and can be also observed in
the images of Fig. 2.

Although fundus images are RGB format (Fig. 2a), the
present work is drawn on monochrome images obtained from
the green component extraction because this band provides
improved visibility of the blood vessels (Fig. 2b). Moreover,
the intensity of this image is adjusted such that 1% of data
is saturated at low and high intensities. Then, a small open-
ing, using a disc of radius 1 as SE (B1), is performed on the
enhanced green component image to fill in any gaps in ves-
sels that could provoke subsequent errors, for example due to
brighter zone within arteries. Next, a dual top-hat, with a SE
larger than the widest vessel (B2), is applied with the goal
of extracting all of them and eliminating structures with high
gradient that are not vessels, as occurs in the optic disc (Fig.
2c). Afterwards, with the aim of highlighting the vessels on
the background, principal curvature, fκ, is calculated as the
maximum eigenvalue of the Hessian matrix [10] resulting the
image shown in Fig. 2d. Finally, stochastic watershed is ap-
plied to the curvature image.

This transformation uses random markers to build a prob-
ability density function (pdf ) of contours (Fig. 2e), which
is then segmented by a last volumetric watershed. Thereby,
the vascular skeleton is part of the frontiers of the resultant
regions (Fig. 2f). In addition to the random markers some
controlled markers are also included. It is forced that there
is at least one marker in the area delimited by the crossing
of two vessels. These areas are determined by means of the
residue of the close-hole operator on fκ. This methodology
avoids that some vessels are not detected by the watershed
transformation (see Fig. 3).

In order to discriminate which frontiers are significant and
which ones are not and should be filtered out, the frontiers are
multiplied by fκ (Fig. 2g) and then are thresholded (Fig. 2h)
using a fixed threshold, experimentally t = 0.05. Once the
skeleton is obtained, a pruning process is applied to remove
possible spurs giving rise to the final result of the presented
method (Fig. 2i and 2j). The implemented pruning process is
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Fig. 1. Flowchart for skeleton extraction.
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Fig. 2. Skeleton extraction process: (a) Original fundus image, (b) Green component, (c) Dual top-hat filtering, (d) Principal
curvature, (e) Probability density function (pdf) of contours obtained with 10 simulations and 300 random markers, (f) Water-
shed frontiers, (g) Product between the principal curvature and the watershed frontiers, (h) Thresholding (t = 0.05), (i) Pruning
and (j) Final result. The images (c)-(i) have been inverted for better visualization.

characterized by removing spur branches but without altering
the main branches. Only the branches whose size is less than
a threshold are removed while the other are left intact.

Next algorithm summarizes the steps of the vessel center-
line extraction method that has been explained.

Algorithm: Vessel centerline extraction
Data: Original RGB fundus image f = (fR, fG, fB)
Result: Vessel centerline, fout
initialization: B1, B2 ;
fin ← fG Green component selection ;
fenh ← Γ(fin) Image Intensity Adjustment ;
fop ← γB1

(fenh) Opening ;
fdth ← ρB2

(fop) Dual top-hat ;
fκ ← max[eig(H(fdth))] Principal curvature ;
fws ←WS(fκ)fmrk

Stochastic Watershed ;
fth ← (fκ × fws) < t Thresholding ;
fout ← Υ(fth) Pruning ;

(a) (b) (c)

(d) (e) (f)

Fig. 3. Stochastic watershed on the crossing of two vessels:
(a) Enhanced green component, (b) Principal curvature (fκ),
(c) Residue of close-hole operator, (d) Random (blue N) and
controlled (green H) markers, (e) Result of the stochastic wa-
tershed using only the random markers shown in blue and
(f) Result of the stochastic watershed combining random and
controlled markers (blue and green).



3. RESULTS

The validation of the method has been carried out on 2 pub-
lic databases widely used: DRIVE [11] and STARE [12].
DRIVE database contains 40 retinal images of 565 x 584 pix-
els, 33 do not show any sign of diabetic retinopathy and 7
show signs of mild early diabetic retinopathy. The set of 40
images is divided into a training and a test set. For the train-
ing images, a single manual vessel segmentation is available
but for the test cases two manual segmentations are included.
STARE database is a set of 20 images along with two hand
labelled vessel network provided by different experts.

Although, in both databases, manual segmentations are
included, these segmentations correspond to the complete
vasculature not to the vessel centerline which is the goal of
this work. For that reason, the homotopic skeleton [7] as-
sociated to the hand segmentations was obtained for future
comparisons. In Fig. 4, the results on some images from
DRIVE and STARE databases can be observed.

(a) (b)

(c) (d)

Fig. 4. Skeleton results of the proposed method: (a,c) DRIVE
images (‘19 test’ and ‘23 training’) and (b,d) STARE images
(‘im0255’ and ‘im0001’).

The validation has been performed in two ways. One of
them is based on comparing the results of this work with
methods that first segment the vessels and after perform a
skeletization process and the other compares it with algo-
rithms that obtain the skeleton directly.

On the one hand, regarding methods that require a previ-
ous segmentation, the presented algorithm has been compared
with two methods published previously. The local maxima
over scales of the magnitude of the gradient and the maxi-

mum principal curvature of the Hessian tensor are used in a
multiple pass region growing procedure in the first work [10].
The other method [13], as this work, is based on mathemati-
cal morphology and curvature evaluation although the mor-
phological operations used are different as well as the ob-
tained result. In the same way as explained above, the ho-
motopic skeleton was performed after the segmentation pro-
cess in both cases. On the other hand, as for the methods
that obtain directly the retinal vessel centreline, the analysis
has been focused on other two approaches based also on wa-
tershed transformation [5, 6]. In Figure 5, the strengths and
weaknesses of the proposed method can be observed in two
examples of both databases.

4. CONCLUSIONS

A method to determine the vascular skeleton on a fundus im-
age has been presented. This work proposes a new approach
based on mathematical morphology and curvature evaluation
and makes use of the stochastic watershed to extract the vessel
centerline in a direct way. A correct vessel skeleton detection
is usually required to analyse different vessel features that can
indicate the presence of several diseases.

Avoiding complete vessel segmentation supposes an im-
provement in the automatic fundus processing since the skele-
ton is not dependent of a previous stage and the computa-
tional cost is reduced by decreasing the number of required
steps. Apart from this fact, it must be stressed that an im-
portant advantage of the proposed method is its performance
in pathological images or with large changes in illumination,
as was observed in Fig. 4 and 5. In those cases, the al-
gorithm presented in this paper works properly and reduces
over-segmentation problems which can be found in methods
based on a previous segmentation as [10, 13]. With regard
to other methods that obtain the skeleton in a direct way and
use the watershed transformation [5,6] instead of the stochas-
tic watershed, the proposed work achieves a more robust de-
tection and decreases the number of spurs. Despite good re-
sults, it must be mentioned that the main disadvantage of the
method is that some vessels can lose their continuity if some
part of them are not detected and it should be corrected in a
post-processing stage.

About future work lines, some post-processing could be
applied on the disconnected skeleton branches to join them if
it was necessary and a wider validation of the method could
be performed.
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