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ABSTRACT

Clustering can be understood as a matrix decomposition prob-
lem, where a feature vector matrix is represented as a product
of two matrices, a matrix of cluster centres and a matrix with
sparse columns, where each column assigns individual fea-
tures to one of the cluster centres. This matrix factorisation is
the basis of classical clustering methods, such as those based
on non-negative matrix factorisation but can also be derived
for other methods, such as k-means clustering. In this paper
we derive a new clustering method that combines some as-
pects of both, non-negative matrix factorisation and k-means
clustering. We demonstrate empirically that the new approach
outperforms other methods on a host of examples.

Index Terms— Clustering, Low-Rank Matrix Approxi-
mation, Sparsity, Brain Imaging

1. INTRODUCTION

Clustering is the process of grouping a set of objects (rep-
resented typically by a set of feature vectors) into distinct
classes. This is often done through the construction of a data
model for each feature. In an unsupervised setting, where the
model as well as the cluster assignments have to be learned, a
fundamental problem is the fact that it is difficult to construct
a model for a cluster without knowledge of cluster assignment
whilst cluster assignment cannot proceed without the cluster
models. Many approaches are therefore iterative. Typical ex-
ample include Expectation Maximisation algorithms [1] and
the k-means algorithm [2].

An alternative approach is based on matrix decompo-
sitions such as non-negative matrix factorisations (NMF)
or semi-non-negative matrix factorisations (semi-NMF) [3].
Methods such as semi-NMF use two steps which are not it-
erated. First, feature vectors are modelled as sums of a small
number of feature vectors, where additional constrained such
as non-negativity are used to guide this decomposition. A
second step then provides hard cluster assignment, typically
assuming that the model features are cluster centres.

Our approach will start from a data model similar to that
used in NMF, but instead of using the non-negativity con-
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straint, we iteratively enforce hard cluster assignment. Let
there be IV objects that are to be clustered. Each object is
represented through a feature vector x;. Let us stack the fea-
ture vectors (treated as column vectors) into a matrix X. As a
model for the clusters assume we have K cluster centre vec-
tors dj, which we also stack into a matrix D. Let there be
errors e; which are the columns of a matrix E. With this no-
tation, we can write the model as

X =DS +E, 6]

where S is a coefficient matrix. If we want each cluster to
be modelled as a perturbation of a single cluster centre, then
the matrix S has to have columns that are 1-sparse, that is,
each column contains a single non-zero element. In fact, the
non-zero elements are restricted to be 1.

If we were to relax the constraint on the non-zero entries
and replace it with a positivity constraint, then features are
modelled as lying in the direction of the cluster centre. This
provides us with an opportunity to cluster feature vectors that
are only known up to a scale factor. This directional cluster-
ing occurs, for example, in text classification [4] and func-
tional brain imaging [5].

2. CLUSTERING AS SPARSE MATRIX
FACTORISATION

Whilst semi-NMF based clustering approaches calculate a
matrix decomposition first and then apply a singe cluster
assignment step, k-means iterates between cluster centre es-
timation and cluster assignment. Our approach that takes
aspects from both of these methods. Inspired by the Iterative
Hard Thresholding algorithm proposed for sparse approxima-
tion [6] we try to find a low-rank approximation to the feature
vector matrix X that simultaneously enforce hard cluster as-
signment. This is done using the following iterative scheme,
where clustering is performed through a hard thresholding
step that only keeps the largest non-zero coefficient in each
column of the coefficient matrix S.

1. INPUT: data matrix X, number of clusters K

2. initial decomposition of X into low rank factorisation
(e.g. using an SVD or some initial cluster assignment)



X =DS+E.
3. iterate until some convergence criterion is met
(a) Calculate cluster assignment: S = P(S)

(b) Check for empty clusters and randomly re-initialise
(see below)

(c) Update cluster centres: D = XS7(SS7)~!

(d) Update cluster weights: S = S + D7 (X — DS) or
S = (DTD)'DTX
Here, the non-linear map P(-) is the hard thresholding step
that sets all but the largest element in each column of S to
Z€ero.

2.1. Catching empty clusters

Step 3.b in the algorithm catches the problem that can arise
when clusters are empty after thresholding. If there are empty
clusters, then the matrix SS” will have a zero diagonal entry
and is thus no longer invertible. In this case, the empty cluster
is re-initialised by randomly assigning a feature from another
cluster to the empty cluster.

2.2. Computational considerations

The following computational points are worth noting.

1. The matrix DT D is a K by K matrix so that for small K,
the inverse in step (d) is easy to evaluate.

2. Because after cluster assignment, the matrix S will have
one-sparse columns so that the matrix SS” is diagonal
and thus will be easy to invert.

It is also important to point out that there are scale am-
biguities in the model. Left multiplication of S by a diago-
nal matrix and simultaneous right division of D by the same
matrix will not change the product DS. It is thus custom-
ary to normalise the columns in D or rows in S. For stan-
dard clustering, this normalisation is done automatically, as
non-zero entries in S are set to 1, however, for the directional
clustering alternative, the scaling issue becomes more impor-
tant. Two possibilities are to normalise columns in D or to
normalise rows in S either before or after cluster assignment
assignment.

For the directional clustering problem, another issue is
that, in order for errors to be comparable between clusters, it
is advisable to normalise the feature vectors x; prior to clus-
tering.

Finally, let us point out that it is also possible to estimate
the number of clusters. This can be done, for example, by an
iterative approach that tries to optimise a cost function that in-
cludes a model complexity term (e.g. the Akaike information
criterion). This can be done efficiently using a line search [7].

3. THEORETICAL ANALYSIS

As with any iterative computational method, several theoret-
ical questions arise. These include a characterisation of the
minima of the associated cost function, an analysis of the
fixed points of the algorithm, convergence properties and the
distance of the solution from the global optimum.

We here report some initial results that go towards an-
swering some of these points'. As there are several variations
of the algorithm, we here restrict the analysis to the follow-
ing scheme for directional clustering. We assume that we
normalise the columns in X to unit length. Let us use the
update recursion S,,1; = S, + DT(X — D,,S,.), Spy1 =
P(S,+1), and assume we normalise D, and S, after
each update of D, 1. For notational convenience, we write
Sn+1/2 = P(Spy1) and Dy yqyp = XST (S, 41S7,1) 7!
and let S, and D,,; be the rescaled versions, such that
D, ;1 has unit norm columns and such that D, gnﬂ =

Dn+1/28n+1/2~

3.1. Cost function minima

For a given S, let X; be the sub-matrix of X containing only
those features that are in cluster ¢ and let s; be the sub-vector
of the i" row of the matrix S, containing only non-zero en-
tries. It can be shown that

Lemma 1. The global minima of the constrained cluster-
ing cost function | X — DS||% is achieved for S with row-
subvectors s; that are right singular vectors of X;, where the
X, are non-empty sub-matrices of X, such that each column
in X is in exactly one sub-matrix.

3.2. Fixed points

Fixed points of the algorithm are those points that satisfy the
recursion.

&S = P(S+((S87)18XT (X —XST(8§87)18))), (2)

where ® is a diagonal matrix (a function of S)? that nor-
malises the columns of the matrix XS7 (SST)~1.

With this fixed point condition and the notation above, it
can be shown that

Lemma 2. The stationary points of the algorithm provide a
partition of the data set such that the non-zero elements in S
associated with cluster i are either orthogonal to the rows in
X; or are eigenvectors of the matrix X1 X;.

3.3. Towards a convergence analysis

To analyse the asymptotic behaviour of the algorithm, we can
derive the following lemma.

1Proofs will be omitted here due to space constraints.
2Note that SS7 is diagonal and so is ®.



Lemma 3. There exist an X* and an infinite subset of indices
n; such that for all €, we can choose an N, < oo such that

”X* - Dmg’nz

<e¢, 3
hold for all n; > N..

Lemma 4. The matrix factorisation algorithm produces a se-
quence of estimates S,, that satisfy:

[Snt1/2 — Snll* — 0. 4

Lemma 5. Assume that the matrices (S,S1)~1S, are
bounded. The matrix factorisation algorithm then produces a
sequence of estimates D,,S,, that satisfy:

||D7L+1gn+1 - Dngn,HQ — 0. (5)

Whilst these do not directly imply that the algorithm con-
verges, due to the fact that clustering is based on selecting the
largest element in each columns of S, lemma 4 implies that
the non-zero elements in S,, either converge themselves to
zero or, that the location of the non-zero entries in the matrix
S does not change after some iteration.

4. EMPIRICAL RESULTS

We here again concentrate on directional clustering examples.
The performance of our new approach is evaluated using Nor-
malised Mutual Information (NMI) [8]. We tried a range of
other measures, all of which gave comparable results. Results
are contrasted with those obtained by k-means clustering [2]
and semi non-negative matrix factorisation (semi-NMF) [3].
‘We used two different versions of k-means, standard k-means
clusters based on euclidean distance, whist spherical k-means
makes cluster assignments based on the angle between fea-
tures and cluster centres.

4.1. Comparison of Different Versions of our Approach
using a Synthetic Data Set

Synthetic data sets were generated by randomly generating
matrices D* € R'9% and binary S* € R from which the
observations were constructed as X = D*S* + E, where E
is an i.i.d. Gaussian noise term.

The standard deviation of E was varied from 0.01,0.1, 1
and 10. Two distinct regimes were compared, one, in which
the average number of features in each cluster were identical
and and extreme example in which one cluster had 91 features
and all other clusters had a single feature.

The first experiment contrasted several variations of the
approach, contrasting three different normalisation steps and
two methods to update S. Results, averaged over 1000 ran-
dom problem instances, are shown in Tables 1 and 2, where,
for each noise level, we have highlighted the best performing
algorithm version in bold.

Table 1. Performance of variations of our method with equally
sized clusters in terms of NMI. Columns: different ways to

update S; Rows: different normalisations.

S+ DT(X-DS) | (D'D) DX
std 001, 0.1, 1, 2 |00L, 01, 1, 2
D 0.95,0.94, 0.84, 0.56 | 0.98,0.97, 0.87, 0.58
S 0.95,0.93, 0.84,0.59 | 0.99,0.98,0.87,0.58
NONE | 0.95,0.94,0.84,0.57 | 0.98,0.97, 0.86, 0.58

Table 2. Performance of variations of our method with widely
varying cluster sizes in terms of NMI. Columns: different

ways to update S; Rows: different normalisations.

S+uDT(X-DS) | (D'D)'DTX
std 001, 0.1, 1, 2 |00, 01, 1, 2
D 0.44,0.39,0.33,0.27 | 0.88, 0.73, 0.41, 0.26
S 0.49,0.37,0.33,0.26 | 0.83,0.67,0.31,0.25
NONE | 0.62,0.38,0.33,0.27 | 0.57, 0.68, 0.34, 0.26

Apart from the condition with very high noise, an update
of S based on the pseudo-inverse of D performed best. For
clusters of similar size a pre-thresholding normalisation of the
rows of S performed better, whilst for clusters of widely vary-
ing size, normalisation of columns of D worked better.

4.2. Comparison of Different Algorithms on Synthetic
Data Sets

The next synthetic data sets were generated again by ran-
domly generating matrices D*, sparse S* and i.i.d. Gaussian
noise E. Four different algorithms (our method, semi-NMF
and standard as well as spherical k-means) were contrasted
in three different scenarios. In each case, D € RM*K was
generated with i.i.d Gaussian zero-mean unit-variance entries.

1. Scenario 1: S € RX*N was generated with each col-
umn set to zero apart from one entry whose location was
chosen at random and whose value was set to 1.

2. Scenario 2: S was generated deterministically so that
each cluster had different numbers of observations x;. We
here used an extreme example, where there were 3 clus-
ters with only 1 observation, 2 clusters with 3 observa-
tions, and 1 cluster each with 6, 10, 14, 24 and 36 obser-
vations respectively.

3. Scenario 3: This was generated in the same way as
dataset 2, with the exception that the cluster centres in D
where each scaled by a zero-mean, unit-variance Gaus-
sian. Thus each cluster did have a different level of noise
compared to the size of the cluster centre.

Four different levels of noise were added with variance of
0,1,4 and 9 (See figures (1) to (3) for average SNR values
for each condition). Noise was added before normalisation of
the observations and results are averaged over 1000 different



realisations of each datasets and noise condition.
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Fig. 1. Performance (in terms of NMI) of our algorithm, semi-
NMF clustering and two k-means variants (spherical and stan-
dard) for scenario 1 for 4 noise levels.
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Fig. 2. Performance (in terms of NMI) of our algorithm, semi-
NMF clustering and two k-means variants (spherical and stan-
dard) for scenario 2 for 4 noise levels.

The results for the three datasets are shown in Figures 1,
2 and 3. The figures are partitioned into four rows, one for
each noise level, and four columns, one for each algorithm.
The SNR value next to each row are empirical estimate for
the level of noise added.

It is clear that for the experiments reported here, our ap-
proach outperforms all other reproaches over all datasets and
noise conditions. Other key observations are

1. The semi-NMF algorithm sometimes performs better than
k-means and sometimes it performs worse.

2. Spherical k-means performs better than non-spherical k-
means run on normalised vectors.

3. There is a clear performance decrease when going from
dataset 1 to dataset 2, though going from dataset 2 to
dataset 3 only reduces performance slightly.

4. The difference between the standard k-means (Euclidean
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Fig. 3. Performance (in terms of NMI) of our algorithm, semi-
NMEF clustering and two k-means variants (spherical and stan-
dard) for scenario 3 for 4 noise levels.

distance) and the spherical k-means is small.

4.3. Clustering of functional MRI data

We initially developed our new approach for the cluster-
ing of brain imaging data-sets. There is extensive interest
in the neuroscience community in the development of al-
gorithms to partition the human brain based on functional
Magnetic Resonance Imaging (fMRI) data acquired during
rest (see [5] for a recent review and additional references).
We used fMRI data from 66 subjects, collected during the
initial stages of phase 2 of the human connectome project
(http://humanconnectome.org/). The data had 2mm isotropic
spatial resolution and a temporal resolution of 1.4 seconds.
The data was processed using a preliminary version of the
Human Connectome Project’s structural and functional min-
imal preprocessing pipelines, final versions to be published
separately (Glasser et al. unpublished). Briefly, this involved
brain extraction, registration of different MRI modalities,
bias field correction, registration to a standard brain template
and cortical surface modelling. Functional data were motion
corrected, distortion corrected, mean normalised and resam-
pled to the cortical surface. Standard surface smoothing and
temporal filtering was applied and ICA based noise reduction
used.

For each of the 66 subjects, the dataset consisted of a
set of approximately 64000 functional MRI time series, each
with approximately 1000 temporal samples each. We split
the dataset into two, with 33 subjects each. For each of these
splits, we combined the data across subjects by estimating the
1000 left singular vectors of the spatio-temporal data matrix
(concatenated in the temporal direction over the 33 subjects).
We thus produced two sets of feature vectors, where each vec-
tor had a length of 1000 and was associated with one of the
vertex locations on the cortical grid representation.

Without ground truth, we use split half repeatability to



evaluate performance using Dice similarity, which is the com-
mon measure used in the field. The results obtained for dif-
ferent numbers of clusters and different methods is shown in
Figure 4. Before calculating dice similarity, we split all clus-
ters we estimated into spatially contiguous regions and then
discarded very small clusters (we here removed clusters that
had less than 20 features, though the flavour of the results
does not vary much if we use another threshold). Also shown
are results for the region growing method proposed in [5].
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Fig. 4. Comparison of four different approaches for cluster-
ing of the cortical surface based on resting-sate fMRI data.
Repeatability measured in terms of average Dice similarity
between clusters plotted for different numbers of clusters.

Our new method out-performs the there methods. To in-
terpret these results, it must be remembered that the region
growing algorithm enforces clusters to be spatially connected.
This is known to introduce additional biases into the estimated
clusters, which in turn generally means that clusters are more
repeatable. Our approach does not include such an additional
spatial constraint and is thus not affected by the associated
bias.

5. CONCLUSIONS

We have here proposed an alternative clustering algorithm
that combines aspects of traditional k-means clustering and
non-negative matrix factorisation approaches. Inspired by re-
cent greedy methods for sparse signal decomposition, an iter-
ative algorithm was developed that estimates a matrix factori-

sation, whilst iteratively enforcing hard cluster assignment.
Several empirical studies highlight the performance advan-
tages of the method. We were here particularly interested in
applications in brain imaging and have therefore concentrated
on directional clustering. For this setting, a characterisation
of the fixed points of the algorithm and the global minima of
the cost function in terms of singular vectors was derived. An
initial analysis of several convergence properties was also pre-
sented. There still remain several open theoretical questions
on convergence and performance that we are currently study-
ing. Two extensions of the method, the inclusion of spatial
constraints and the extension to cluster directly from com-
pressed measurements are studied in a companion paper at
this conference [9].
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