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ABSTRACT

A computationally-efficient single-channel speech enhance-
ment algorithm to improve intelligibility in monaural hear-
ing aids is presented in this paper. The algorithm combines a
novel set of features with a simple supervised machine learn-
ing technique to estimate the frequency-domain Wiener fil-
ter for noise reduction, using extremely low computational
resources. Results show a noticeable intelligibility improve-
ment in terms of PESQ score and SN Rgg;, even for low
input SNR, using only a 7% of the computational resources
available in a state-of-the-art commercial hearing aid. The
performance of the algorithm is comparable to the perfor-
mance of current algorithms that use more computationally
complex features and learning schemas.

Index Terms— Speech enhancement, Noise reduction,
Time-frequency masking, Supervised learning.

1. INTRODUCTION

Speech enhancement in monaural hearing aids is an open and
complex problem mainly due to two reasons. First, the im-
provement of speech intelligibility rather than speech quality
is primordial for hearing-impaired people. Second, the com-
putational resources and memory available in the digital sig-
nal processor (DSP) embedded in such devices is very low.

Traditional methods for single-channel noise reduction
based on spectral subtraction [1, 2], the Wiener filter [3, 4],
or the minimum mean-square error (MMSE) estimator [5, 6]
have demonstrated their ability in reducing background noise,
but they are not capable of improving speech intelligibil-
ity [7, 8]. The main reason is that these algorithms have been
designed to improve speech quality, which can be easily im-
proved by increasing the signal-to-noise ratio (SNR), rather
than to improve speech intelligibility, which is only improved
by suppressing the background noise without distorting the
target speech signal. However, many traditional algorithms
introduce speech distortions, usually as an annoying ‘musical
noise’.

Originated in the field of computational auditory scene
analysis (CASA), the time-frequency (T-F) masking approach
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has grown in importance in recent years, due to its ability to
improve the intelligibility of speech in noise. It is demon-
strated in [8] that the ideal binary mask (IBM) defined in
CASA [9] maximizes the articulation index (AI), a metric
highly correlated with speech intelligibility. Unfortunately,
the computation of the IBM needs to have access to the clean
speech and noise signals and, in practice, it should be esti-
mated from the corrupted speech signal. The CASA approach
performs this estimation using features inspired in the human
auditory system (pitch, amplitude and frequency modulation,
onset/offset, etc.). However, it is conceptually and computa-
tionally simpler to use machine learning techniques to iden-
tify each T-F point as speech-dominated or noise-dominated.

Some prior works that use supervised learning to estimate
a T-F mask are described in the following review. In [10], the
IBM is estimated using an accurate binary Bayesian classi-
fier that uses amplitude modulation spectrograms (AMS) as
input features and trains Gaussian mixture models (GMM) to
represent the distribution of each class. In [11], the previ-
ous classification schema is used to estimate a different bi-
nary mask based on magnitude spectrum constraints. The
same approach has also been applied to estimate soft masks,
which have proved to improve intelligibility better than bi-
nary masks. In [12], a soft mask is generated by estimating
the local SNR using AMS as features and a multi-layer per-
ceptron (MLP) as estimator. In [13], a smoothed ideal ratio
mask (IRM) is estimated using deep neural networks (DNN)
and features calculated in the Mel spectral domain.

In this paper, a novel machine learning algorithm to esti-
mate a T-F soft mask is proposed. The main novelty of the
algorithm resides in the proposed set of features and its ex-
tremely low computational cost, which makes its implemen-
tation in a commercial hearing aid easier than previous works
in this field, which have used more computationally complex
features (MFCCs, AMS, etc.) and learning schemas (GMM,
MLP, DNN, etc.). In this work, both the proposed features
and the estimator require low computational resources.

2. COMPUTATIONAL RESOURCES AVAILABLE
FOR SIGNAL PROCESSING IN HEARING AIDS

In this section, the computational resources available for
speech enhancement in a state-of-the-art commercial hearing



aid are quantitatively measured in terms of instructions to
process each frequency band (IPF). The T-F analysis is based
on a discrete Fourier transform (DFT) filterbank and usually
implemented in a specific processor, hence it does not imply
any consumption of computational resources from the main
processor. Common DSPs embedded in hearing aids have
a processor with a selective clock speed that usually goes
from 1.28 MHz to 5.12 MHz. They have a Harvard architec-
ture containing a multiplier-accumulator (MAC) with a set of
instructions completed in a clock cycle. Then, the number
of mega instructions per second (MIPS) is the clock speed
value. The sampling rate (f5) is usually adjustable (normally
fs < 16 kHz). Considering that the analysis and synthesis
windows have a length of Lyy;n samples working with 50%
of overlap, and that the DFT-based frequency analysis con-
tains K frequency bands, the IPF for each frame is calculated
using the next expression:
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In the special case of a processor with a clock speed of
5.12 MHz (5 MIPS), fs= 8 kHz, Ly ;ny= 64 samples, and
K = 32, the IPF is 625. This IPF value will be considered as
reference value in the remaining part of this paper. The com-
putational resources are shared between the own speech en-
hancement algorithm, the multi-band compression-expansion
algorithm (which is an indispensable algorithm), and other
algorithms dedicated to feedback cancellation or automatic
sound classification. Hence, the speech enhancement algo-
rithm proposed in this paper will use only a part of the avail-
able IPF calculated in this section.

3. PROPOSED ALGORITHM

Let us consider X (k,1) = S(k,l) + N(k,[) to be the short-
time Fourier transform (STFT) of a speech signal S(k, [) con-
taminated by noise N (k, ), where k denotes frequency and [
the time frame. The frequency-domain Wiener filter, which is
inspired by the expression of the non-causal Wiener filter [3],
is given by
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The main goal in this work is the design of a computationally-
efficient algorithm to estimate the Wiener mask from the mix-
ture signal X (k,l). The proposed solution is based on su-
pervised learning, using a low-cost linear estimator whose
weights are calculated during the training stage. The key
point of the algorithm is the novel set of features proposed
for estimation. The features require a small number of in-
structions to be calculated and allow the linear estimator to
obtain low estimation errors.

Figure 1 shows a block diagram of the proposed enhance-
ment algorithm. The diagram has been divided into two parts,
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Fig. 1: Algorithm overview.

the training stage (top) and the enhancement stage (bottom).
The first block (left) in the two stages represents the T-F anal-
ysis, which is performed by computing a 64-points DFT for
each time frame, using a Hamming window with an overlap
of 50%. In the training stage (top) the Wiener soft mask is
calculated from the clean speech and noise signals, and it is
used as target to train the estimator. The proposed estimator
uses a set of features extracted from the STFT of the mixture
to estimate the target mask. The weights calculated during the
training stage are used during the enhancement stage to esti-
mate the mask from the input noisy signal and to generate the
enhanced speech signal. The different parts of the algorithm
are explained in detail in the remaining of this section.

3.1. Generalized least squares estimator (GLSE)

Least squares estimation (LSE) is an approach that fits a
parametrized mathematical model to the observed data by
minimizing the mean square error (MSE) between the ob-
served data and their expected values. In the case that
the model combines linearly the unknown parameters, the
method is known as linear least squares.

Let us define the pattern vector x; = [1, 2,1, ... ,iEip]T,
where x;1, ..., x;p are P input features (i.e. the observations
of the model). The pattern matrix Q = [x1,...,XL] con-

tains the patterns x; of a set of L data samples. The output
of the LSE is obtained as a weighted linear combination of
the input features, according to y = VTQ, where the vector
v = [vg, 1, V2, .. ., vp]T contains the bias vg and the weights
applied to each of the P input features and y contains the
output for the L input patterns. The vector v is calculated to
minimize the error between the obtained output and its de-
sired value. In the case of supervised learning, the desired
output values are available and used for training. The MSE of
the estimator is given by

1 2 1 T 2
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where t = [t1,t2, -+ ,tr]" is the target vector containing
the desired output values for the L input patterns. The MSE
is minimized by differentiating expression (3) with respect to
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every weight in v and setting the result equal to zero, which
yields the next expression

v=tQ7 (QQ") " @)

In order to improve the performance of the linear LSE, it
is proposed to introduce non-linear transformations of the in-
put features, which are still linearly combined, unlike the non-
linear least squares approach. The matrix Q is now defined
as Q = [fl(xl)v EERR) fl(XL)7 e '7fNT(X1)’ e '7fNT(XL)]’
where f1,..., fn, are Np linear or non-linear transforma-
tions performed over the original input features x;. The
weight vector is then defined as v = [vg, vy, ... ,vNT.p]T,
and it can still be obtained using expression (4). Henceforth,
this is denoted generalized least squares estimator (GLSE).

In the problem at hand, a different GLSE is used to
estimate the mask of each frequency band. The P in-
put features are extracted from the mixture X (k,!1) for
each of the L time frames (i.e. the L input patterns).
The output of the GLSE for the k-th frequency band is
v = [y(k,1),....y(k,0),....,y(k,L)]*, and it is the esti-
mation of the T-F mask (i.e. M (k,1) = y(k,1)).

3.2. Proposed features for estimation

Let us assume that the output of the DFT-based analysis fil-
terbank is | X (k,1)|2. This information can be used as input
feature by the estimator but, according to the aforementioned
GLSE, further transformations of this feature can be also in-
cluded. Specifically, the logarithm and the square logarithm,
log(| X (k,1)|?) and log?(|X (k,1)|?), have been experimen-
tally found to provide the most meaningful information to the
GLSE and they are included as input features.

Additionally, it is proposed to use the information of
neighbor T-F points as input features. The logarithm and the
square logarithm of N adjacent neighbor frequency bands
of the current time frame (Nr upper and Ng lower bands)
are also included as input features. The information regard-
ing previous time frames is also included, but in a special
way. An exponentially-weighted moving average (EWMA)
of the logarithm and the square logarithm of the previous time
frames is calculated for each frequency band, according to:

Ak, 1) = (1=2"A(k, 1= 1)+27F(k, 1), a€ZT, (5

where A(k,l) is the EWMA for the k-th frequency band
in the I-th time frame, f(k,l) represents the input value
(log(|X (k,1)|?) or log?(| X (k,1)|?)), and « is a smoothing
factor that controls the degree of weighting decrease. A lower
value of « discounts older observations faster. The EWMA
is calculated with (D — 1) different values of «, having
(D — 1) different EWMA for each frequency band, which are
included as input features. From the computational point of
view, the use of exponential values (2~%) as filter coefficients
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Fig. 2: Number of instructions associated to the computation
of the proposed features.

is equivalent to shift a value « bits in memory, which reduces
the computational cost associated to the computation of the
EWMA.

In summary, according to the proposed feature schema,
each T-F point has a total of P = 2N + D input features.

3.3. Computational cost of the proposed algorithm

In the enhancement stage, the estimation of the T-F mask only
involves the operation v?' Q, using the fixed weights previ-
ously calculated in the training stage. The implementation of
the proposed estimator is relatively simple, its computational
cost being directly related to the number of features. Consid-
ering that the MAC operation is executed in a single instruc-
tion, the number of instructions required by the estimator can
be reduced to 2P, P being the number of input features in-
cluded in Q (i.e. P = 2Np + D). Assuming that the output
of the T-F analysis filterbank is | X (k, )|, and according to
the standard assembler language used in this type of DSPs, the
number of instructions required for the computation of the in-
put features is 14+4(D — 1), as shown in figure 2. According
to this, the number of instructions necessary to process each
frequency band is IPF = 4Ng 4 6D + 10. Consequently,
the values Nr and D should be selected to find a tradeoff
between speech enhancement and computational cost.

4. EXPERIMENTAL WORK AND RESULTS

4.1. Database setup

Speech and noise mixtures of different SNRs are generated,
using the speech and noise signals contained in the NOIZEUS
database described in [7]. The database contains 30 sentences
produced by three male and three female speakers, corrupted
by 8 different real-world noises at different SNRs, including
suburban train noise, babble, car, exhibition hall, restaurant,
street, airport and train-station noise. The signals are sampled
at 8 kHz. The 30 clean speech signals are normalized and
linked together, one after the other, obtaining a speech seg-
ment of 80 seconds length. The 30 noise signals of each type
of noise are also normalized and linked together, obtaining 8
different segments of 80 seconds length. The clean and noise
signals are split into two different parts, one for training and
another for testing. The training set consists of the 60% of
the signals (56 seconds) and the test set consists of the 40%
of the signals (24 seconds). Then, the training and test clean
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Fig. 3: PESQ obtained by the proposed algorithm in the test
set, as a function of the percentage computational cost. D val-
ues are represented with lines of different colors, and Ny val-
ues are represented with squares over the lines (N increases
from left to right).

speech segments are repeated 8 times, generating a signal of
448 seconds length in the case of training and 192 seconds
length in the case of test. The 8 different noise segments are
linked together, for the training and test sets separately. Fi-
nally, the clean and noise signals of both sets are normalized
and mixed at the desired SNR.

4.2. Results

The computational cost of the proposed estimator directly de-
pends on the values N and D. In order to find a tradeoff
between speech enhancement and computational cost, the es-
timator is trained with different values of Nr and D. The
value N has been varied from O to 8 and the value of D from
1 to 7, in both cases with steps of 1. Note that the specific case
of Nr = 0 and D = 1 corresponds to the case of considering
only the information of the current T-F point for estimation.
The enhancement obtained over the test set is evaluated us-

Table 1: PESQ scores corresponding to the unprocessed mix-
ture (UN), the ideal Wiener mask (IWM), and the proposed
algorithm in the test set (TEST), and SN Rgs; (dB) obtained
by the proposed algorithm in the test set.

SNR PESQ SNRps(dB)
UN IWM TEST

S5dB | 132 246 148 541

0dB | 158 273 183 440

5dB | 1.88 302 221 341

ing an objective measure of speech quality and intelligibility.
This measure is the PESQ score proposed in [14], which was
first designed to evaluate the speech quality, but several works
have reported high correlation between PESQ score and sub-
jective listening tests [15, 16].

Figure 3 represents the PESQ scores obtained by the pro-
posed algorithm in the test set, as a function of the compu-
tational cost expressed in percentage of the total number of
available IPF. The different values of D are represented with
lines of different colors, and the different values of N are
represented with squares over the lines (/Ng increases from
left to right). The SNR is - 5 dB in (a), 0 dB in (b), and 5
dB in (c). Analyzing the three graphs we find that a value
of D = 5 and Nr = 1 represents a good tradeoff between
the PESQ score and computational cost. This option repre-
sents only a 7% of the available IPF and the increment of D
or Ny barely improves the PESQ score. Additionally, the im-
portance of using the information of neighbor T-F points for
the proposed estimator is clearly demonstrated.

Table 1 contains the PESQ score obtained by the unpro-
cessed mixture (UN), the ideal Wiener mask (IWM), and the
proposed algorithm in the test set with D = 5 and Np = 1
(TEST), for the different SNRs. Although the PESQ scores
obtained in the test set are still far from the ones obtained by
the ideal (but unrealizable) Wiener mask, they represent an
important increment in the PESQ score in comparison to the
unprocessed mixture, and what is probably more important,
they have been achieved using extremely low computational
resources (7%). Additionally, the signal-to-residual spectrum
measure SN Rggy proposed in [8], whose correlation with
speech intelligibility was found to be 0.81 [16], has been cal-
culated for the output of the proposed algorithm in the test set
(right column). The SN Rggy is calculated to provide more
meaning to the PESQ increments. In the worst case (SNR=-
5 dB), a PESQ increment of 0.16 is obtained, which corre-
sponds with a SN Rgsy of 5.41 dB, which is a good value.

Finally, the proposed algorithm is compared with the
eMBM algorithm described in [11], in terms of PESQ score.
The eMBM algorithm defines an ideal magnitude-constraints
binary mask (IMBM) and trains two GMMs using AMSs
features to estimate the IMBM with a two-class Bayesian
classifier. The computational cost of this algorithm is clearly
higher that the one of the algorithm proposed in this pa-
per. Table 2 contains the PESQ increments achieved by the
two algorithms for two types of noises (the ones evaluated



Table 2: Increments in the PESQ scores achieved by the
eMBM algorithm and the proposed algorithm (TEST).

SNR Airport babble 20-talker babble
eMBM TEST | eMBM TEST

-5dB 0.18 0.21 0.13 0.18

0dB 0.32 0.28 0.14 0.24

in [11]), averaged over different time segments. In gen-
eral, the proposed algorithm obtains slightly higher PESQ
increments than the eMBM algorithm, and most importantly,
this performance is obtained using very low computational
resources.

5. CONCLUSIONS

In this paper, a computationally-efficient speech enhancement
algorithm for monaural hearing aids has been proposed. The
algorithm uses supervised learning to estimate a T-F soft mask
based on the Wiener filter. Contrary to similar algorithms
found in the literature, the computational complexity of the
proposed estimator and the extraction of the input features
is extremely low. The proposed solution only requires a 7%
of the available computational resources in a state-of-the-art
hearing aid and the obtained results support the ability of the
algorithm to enhance noisy speech in terms of PESQ score
and SN Rgs;. Additionally, it is noticeable the importance
of using the information of neighbor T-F points to estimate
the mask, especially the proposed EWMA related to previous
time frames. The proposed estimator clearly fails without the
information of the previous time frames.

To conclude, the proposed algorithm represents a compu-
tationally feasible solution for speech enhancement in com-
mercial hearing aids. Although the optimal Wiener mask may
be better estimated using more complex set of features and
learning schemas, they are not probably realizable with such
low computational resources.
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