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ABSTRACT

This paper presents a new segmentation approach, for 3D dy-
namic meshes, based upon ideas from Morse theory and Reeb
graphs. The segmentation process is performed using topo-
logical analysis of smooth functions defined on 3D mesh sur-
face. The main idea is to detect critical nodes located on the
mobile and immobile parts. Particularly, we define a new
continuous scalar function, used for Reeb graph construc-
tion. This function is based on the heat diffusion properties.
Clusters are obtained according to the values of scalar func-
tion while adding a refinement step. The latter is based on
curvature information in order to adjust segmentation bound-
aries. Experimental results performed on 3D dynamic articu-
lated meshes demonstrate the high accuracy and stability un-
der topology changes and various perturbations through time.

Index Terms— 3D dynamic meshes, segmentation, Reeb
graph, heat diffusion, curvature information.

1. INTRODUCTION

3D dynamic shapes are becoming a media of increasing im-
portance. They constitute a fundamental and time consuming
task in 3D animation systems. This dynamic shapes are usu-
ally represented by a sequence of 3D meshes with temporal
information provided by time-varying geometry. A dynamic
articulated model is subject to a wide variety of processing
operations such as segmentation, compression and indexa-
tion.

Mesh surface segmentation has been studied in computer
vision, especially for compression and simplification. It con-
sists in partitioning mesh elements (vertices, edges and faces)
into disjoint sets according to certain criterion (curvature,
patch area,...). The issue of 3D static meshes segmentation
has rapidly gained the interest of the scientific community in
recent years. However few existing works in the literature
studies motion based segmentation for 3D dynamic meshes
[1, 2, 3].

The pioneer method developed by Lengyel [1] proposes
to partition the mesh into components, whose motion can be
accurately described by a 3D affine transform. This heuris-
tic approach select randomly 10% of triangles in mesh. The

remaining vertices are classified according to the motion of
these triangles. The drawback of this approach resides in
the large number of clusters which is independent of the mo-
tion. Amjoun et al. [2] extended this approach, to develop
region growing segmentation algorithm. The authors pro-
pose to search the N farthest triangles in geodetic sense. The
choice of triangles germs is based only on the geometry of
the first frame. This may justify the lack of efficiency of the
segmentation approach. The authors of [3] propose another
alternative of [1]. The main idea consists on calculating, for
each vertex v, the affine transform that optimally describes the
motion of his neighborhood. All the vertices whose motion
can be described by the same affine transform with respect
to a minimum error motion compensation are grouped in the
same cluster. The sub-optimal selection of vertices leads to a
misclassification of the ones located on the borders between
clusters.

More Recently Rosman et al. [4, 5] developed a motion-
based segmentation technique to partition an articulated 3D
shape into rigid parts. The proposed approaches rebuild on
the Ambrosio-Tortorelli scheme for Mumford-Shah segmen-
tation [6]. The latter establishes an optimality criterion to seg-
ment the 3D shape into sub-regions. The technique presented
in [5] consists on performing a segmentation by resolving a
piecewise-smooth regularization problem.

Skeletonisation and segmentation tasks are closely re-
lated, one being the driver to the other. Mesh segmentation
is often formulated as graph clustering. Few existing works
in the literature use Reeb-graphs or skeletons to accomplish
a structural based segmentation of static meshes [7, 8]. Up to
date no work based on Reeb-graphs has been investigated for
3D dynamic meshes segmentation.

In this paper, we propose an implicit segmentation method
which exploits the temporal information. The main contribu-
tion consists in partitioning dynamic meshes based on Kine-
matic Reeb graph (KRG) extraction method. It is no worthy
that KRG technique allows the extraction of topological fea-
tures which are preserved through the time. In this work, we
first define a new scalar function based on the eccentricity
in term of diffusion distance to construct the KRG. Then we
present our implicit segmentation algorithm based on curva-



ture and boundary information.
The rest of this paper is organized as follows. In Section 2

we describe the KRG construction technique which is the core
of the proposed approach. In Section 3, we describe our seg-
mentation method in detail. In Section 4, we investigate the
performance of our system in terms of accuracy and robust-
ness. Finally, in Section 5, we conclude with final remarks
and present some future work.

2. REEB GRAPH CONSTRUCTION

Reeb graph is a topological structure determined using a con-
tinuous scalar function defined on an object of arbitrary di-
mension. More specifically, a Reeb-graph is a schematic way
to encode the behavior of a given continuous function f on a
surface. It is a structure that represents the evolutions of the
level lines of a f , defined over objects of any dimension (k-
manifolds) [9]. The proposed approach for Reeb graph con-
struction is performed in two steps. First, we extract the fea-
ture points based on the diffusion distance. Then, the set of
these feature points is taken as the initial data to compute the
scalar function µ.

2.1. Feature points extraction

In the literature, many approaches were proposed to detect
the local extremum for rigid and non rigid models. To ex-
tract the set of feature points, we adopted a strategy which
is inspired from Tierny et al. [10] method. The extraction
process starts by looking for the two farthest points, v1 and
v2, in geodesic sense. To extract two local properties groups,
the authors of [10] defined two geodesic functions associated
with each points v1 and v2. The intersection of the resulting
groups provides the set of feature points. This approach pro-
duces a set of well-localized points. But the feature points
are very sensitive against topological changes. To overcome
this problem and ensure stability under eventual perturbations
over time, we propose using the diffusion distance d2t instead
of geodesic one while keeping the same process. It is worth-
while to note that global properties of the shape are detected
through the behavior of heat diffusion over longer time. On
the overhand local properties are detected through the behav-
ior of heat diffusion over short time. Indeed, the heat diffu-
sion is fully described by the heat kernel associated with the
Laplace-Beltrami operator. For a given surface S, d2t mea-
sures the connectivity distance between two points x, y ∈ S
at a given time t according to the following equation:

d2t (x, y) = kt(x, x) + kt(y, y)− 2kt(x, y)
=

∑∞
i e(λit)(ϕi(x)− ϕi(y))

2.
(1)

The heat kernel kt(x, x) does not admit an explicit func-
tion; it can be computed based on the Laplace-Beltrami oper-
ator, with λi and ϕi are respectively the ith eigenvalues and
eigenfunctions of the Laplace-Beltrami. Considering discrete

meshes, many cotangent schemes have been proposed to esti-
mate the Laplace-Beltrami operator [11, 12, 13]. In this work,
we suggest to use the solution proposed in [13] to approxi-
mate the Laplace-Beltrami operator and calculate the set of
eigenvalues and eigenfunctions. Note for small t, the vari-
ation of the heat kernel function is large but decays as t in-
creases. Therefore, to ensure an accurate detection of feature
points, we scale the temporal domain logarithmically. This
gives a more faithful approximation of local shape properties
at the choosing time range [t1, t2]. Let vi be one of the two
farthest points (vi ∈ {v1, v2}). The set of feature points fvi

corresponding to vi is given by:

fvi
= d2t (v, vi) =

∫ t2

t1

kt(v, v)+kt(vi, vi)−2kt(v, vi)d log t.

Elements belonging to both fv1 and fv2 groups, constitute the
set of feature points F . Thus, F = fv1 ∩ fv2 will be used as
origin to compute the scalar function defined in Section 2.2.

2.2. Proposed scalar function

According to the Morse theory, a continuous function defined
on a closed surface characterizes the topology of the surface
on its critical points. Thus, a Reeb graph can be obtained
assuming a continuous function µ calculated over the 3D ob-
ject surface [14]. In the following we only consider objects
which are closed 2-manifold meshes with vertices located in
a Cartesian frame R(x; y; z).

Given a surface S of a 3D object and a real continuous
function µ : S 7→ R, the Reeb graph is the quotient space
of the graph of µ in S × R with the equivalence relation “∼”
between X ∈ S and Y ∈ S is given by:

X ∼ Y ⇐⇒
{

µ(X) = µ(Y )
Y ∈ µ−1(µ(X)).

(2)

More specifically, for two nodes vi, vj :

(vi, µ(vi)) ∼ (vj , µ(vj)),

if and only if µ(vi) = µ(vj), where vi, vj belong to the same
connected component of µ−1(µ(vj)).

Several work have been developed to propose a Reeb
graph construction for rigid models [15, 16]. The proposed
approaches have been later extended to non-rigid models
[17, 18]. In particular, the pioneer method developed by Hi-
laga et al. [15] proposes to calculate a scalar function based
on geodesic distance. Gal et al. [18] extended this context
for non-rigid models. Nevertheless, scalar function based on
geodesic distance is penalized by its sensitivity to topology
changes.

In our work we propose to define an appropriate continu-
ous function µ in order to guarantee invariance and stability
of the graph structure. The proposed scalar function, which
exploits the temporal information, is based on the eccentricity



ecc in terms of the diffusion distance. The latter is defined as
the mean square of the diffusion distance on the whole surface
of S:

ecct(x) =
1

area(S)

∫
S

d2t (x, y)dy. (3)

By using the discrete case, the µ function is computed, as
the sum of the eccentricity from v to each one of the feature
points. Assuming that the surface S is approximated through
a discrete triangular mesh M , for each vertex v ∈ M , µ(v) is
established by:

µ(v) =
1

area(M)

∑
p∈F

d2t (v, p)area(p), (4)

where area(M) being the surface area of M , F represents
the set of feature points, which are extracted in the first step,
and area(p) being the area that p occupies.

As result, the triangular mesh M is divided into regions
depending on the values of µn. Each connected component
associated with each level set identifies a set of equivalent
surface points and is represented with a node in the graph.
The graph structure is obtained by linking the nodes of the
connected regions.

3. PROPOSED SEGMENTATION APPROACH

A scalar function value µ(v) is associated with each vertex
v ∈ 1, ..., V . We obtained a vector that contains all the val-
ues of µ function for a given Frame. The vector size is the
number of vertices in the consider mesh. Depending on the
value of µ, the vector is divided into intervals according to the
number of connected components associated with each inter-
val. Contiguous intervals with the same number of connected
components are merged into a single interval. The process
is repeated iteratively in order to reduce the number of re-
gions (clusters). At each step, the system performs a fusion
operation on the intervals groups that have the same number
of connected components. The iterative loops stops when all
the resulting intervals admit a different number of connected
components.

Using a scalar function µ based on the heat diffusion leads
to a set of critical points well located on articulations at both
immobile and mobile parts. However, computing the value
of µ in the discrete case may prevents the detection of re-
gion boundaries. Therefore, in order to adjust segmentation
boundaries with respect to deep surface concavities, a refine-
ment step is required. The additional treatment may leads to
an accurate detection of region boundaries.

Each region boundary is a level set and is thus associated
with a value of µ that corresponds to a critical point. In our
case, the proposed µ function is stable against perturbations
and invariant under isometric transformations. Thus we have
overcome the locality problem. A perturbation of the µ value

does not affect the locality boundaries. As result, the latter
remains stable and does not shift to a new level set. In the
refinement step, to identify a perceptually salient decompo-
sition, we only consider the concavity problem. The opti-
mal value of µopt should determine a boundary that matches
a deep concavity profile on the object surface. It should be
close to µc that correspond to the closest critical point. The

Table 1. Properties of the tested dynamic meshes.
Vertices Frames Nb regions time (s)

Horse 8431 47 26 181
Cat 7207 10 20 34
Lion 5000 11 12 49
Camel 21887 11 38 217

objective aimed at is to found the the optimal value µopt that
determines the boundary profile. The issue maybe considered
as an optimization problem, which consists of minimizing the
concavity function Econcave(µ′) of each region boundary as-
sociated with a value of µ′. Econcave(µ′) is defined by:

Econcave(µ′) = min
µ′

(Kmin(c(µ′),R(t))⊗Gσ(t)), (5)

being Kmin(.) a function returning the sequence of Kmin

curvature values, computed according to [19], along the
boundary profile, c(µ′)R(t) the curve-parameterized with
respect to the normalized arc-length t. In fact, c(µ′)R(t)
represents the portion of the µ values set corresponding to
the boundary of region R. Convolution ⊗ with a gaussian
smoothing kernel Gσ(t) leads to smoothing values of the
Kmin. Consequently, the minimum identification will be
more efficient and stable. Curvature information is exploited
to refine the segmentation and adjust region boundaries so as
to match deep surface concavities.

a

b

Fig. 1. Reeb graphs (Part a) and segmentation (Part b) of
different 3D meshes.

4. EXPERIMENTAL RESULTS

In order to evaluated the proposed segmentation approach, we
consider some 3D dynamic meshes named: “Horse”, “Cat”,



Fig. 2. Segmentation of different 3D mesh sequences.

“Lion” and “Camel”. These models are characterized by their
various motions and complexities. Moreover, they offer a
good variability in terms of spatial and temporal sizes. Table
1 summarizes their properties, expressed in terms of numbers
of vertices, number of frames, number of obtained clusters
and the average running time including the Reeb Graph ex-
traction process.

4.1. Accuracy assessment

To evaluate the execution-time, the tests were conducted on a
laptop with an Intel Core 3 CPU M350 at 2.23 GHz, and oper-
ating system Windows 7 SP 1. From Table. 1 one can notice
that the running time is smaller when the number of vertices
decreases. This is due to the computation of laplace operator
eigenvalue and eigenvector during the Reeb graph extraction.
Fig. 1.a illustrates the test 3D models, represented by their
reference frame, and their extracted Reeb graph plotted on the
same figure. We can clearly see that the proposed approach
allows detecting a set of extremum local points (red nodes)
which are located on the object boundary. Fig. 1.b shows
the segmentation results using the extracted Reeb graphs. For
each test mesh we show regions related to each node in the
Reeb graph, with a different palette of colors. Fig. 2 depicts
some segmentation results for the test sequences. The number
of clusters varies from one model to another with character-
istics reported in Table. 1. We note that the segmentation
process allows partitioning the mesh into clusters consisting
of topologically connected vertices.

To assess the robustness of the proposed segmentation ap-
proach, we applied some transformations like noise addition
(Fig. 3.2.a), holes (Fig. 3.2.b) and missing parts (Fig. 3.2.c).
These transformations were performed to a set of interme-

1

2

(a) (b) (c)

Fig. 3. Robustness of the proposed approach against various
transformations, Part 1: original sequence, Part 2: modified
sequence applying noise addition in (a), holes in (b) and miss-
ing parts in (c).

diate frames of the “Lion” model. In Fig. 3, we compare
the extracted Reeb graphs corresponding to the modified se-
quence and the original one. We can observe that our algo-
rithm produces well-localized feature points, which are stable
against the tested transformations. From the same figure, we
can notice that the segmentation is invariant under almost all
applied transformations. This proves the high stability of the



proposed approach.

5. CONCLUSION

In this paper, we presented a novel segmentation approach
combined with a Reeb graph construction method for 3D dy-
namic meshes. By using an efficient and stable continuous
function, 3D dynamic meshes are portioned on set of level
lines depending on their curvature and boundary information.
Preliminary experimental results have shown that the con-
structed kinematic Reeb graphs preserve the topology of the
test models. Consequently, we obtain a more faithful seg-
mentation despite the perturbations occurred over time. The
accuracy of the vertices distribution, on the border between
clusters, has been enhanced by exploiting the curvature infor-
mation.

In our future work, we plan to investigate the proposed
approach to develop a 3D dynamic compression scheme.
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