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ABSTRACT

Using multiple description (MD) coding mechanisms, this

paper proposes a novel coding framework for error-resilience

in distributed source coding (DSC) in sensor networks. In

particular, scalable source descriptions are first generated

using a symmetric scalable MD scalar quantizer. These de-

scriptions are then layered Wyner-Ziv (WZ) coded using

low-density parity-check accumulate (LDPCA) -based syn-

drome binning. The decoder consists of two side decoders

which attempt to iteratively decode their respective descrip-

tion at various LDPCA puncturing rates in the presence of a

correlated side information. A central decoder exploits the

inter-description correlation to further enhance the WZ rate-

distortion performance when both descriptions are partially

or fully received. In contrast to earlier work, our proposed

decoding scheme also exploits the correlation that exists be-

tween bit-planes. Experimental simulations reveal that, for a

Gaussian source, the proposed system yields a performance

improvement of roughly 0.66 dB when compared to not

exploiting inter-description correlations.

Index Terms— multiple description coding, distributed

source coding, cross-decoding, layered Wyner-Ziv coding

1. INTRODUCTION

Modern day sensor networks consist of tiny low-power sen-

sors deployed over a geographical area for monitoring phys-

ical phenomena, such as temperature, pressure, vibration or

video-based surveillance of areas under observation. Com-

munication in these networks is largely constrained by the

low battery life of the employed lightweight sensors. Thus,

low cost coding frameworks that can enable efficient com-

pression and transmission of the sensed quantities are of key

importance. Distributed source coding (DSC) [1, 2] aligns

well with the needs of such sensor networks [3]. The sen-

sors send their compressed output to a central station where

joint decoding is performed, exploiting the inter-source cor-

relations at the decoder side. An important application of

DSC is distributed video coding (DVC) [4]. DVC is a partic-

ularly interesting video coding paradigm for lightweight de-

vices that are limited in battery life, with applications in e.g.,

video surveillance, low complexity mobile video communica-

tion [4], wireless capsule endoscopy [5] and distributed cod-

ing of multi-view video [6].

In sensor networks, communication of data to a cen-

tral station seldom occurs without losses, especially when

transmission is carried out through wireless or best-effort net-

works. Multiple description (MD) coding [7] is an attractive

solution in this respect as it ensures a gradual decrease in the

source’s reconstruction quality without the need for retrans-

mission. In MD coding, instead of sending only one version

of the source data, multiple mutually refinable source descrip-

tions are sent over different physical or logical network paths.

The source’s reconstruction quality scales with the number of

received descriptions, with highest quality attained when all

descriptions are received. Multiple description scalar quan-

tizers (MDSQs) [8] represent a common practical solution for

MD coding; for other methods we refer to [7].

In this paper, we propose a novel MD based error-resilient

coding framework for Wyner-Ziv (WZ) coding [2]. Coupling

MD and WZ principles offers the possibility to maintain the

lightweight encoding feature of WZ coding while making

use of the error-resilient capabilities provided by MD cod-

ing. Earlier MD-WZ coding designs include the system of

[9], employing the MD uniform scalar quantizers (MDUSQs)

of [10] and layered WZ coding [11] via low-density parity-

check accumulate (LDPCA) code syndrome binning. In this

paper we propose a novel MD-WZ coding framework which

improves over [9] in three ways. Firstly, the proposed sys-

tem makes use of our recently proposed symmetric scalable

MDSQ (SSMDSQ) instead of MDUSQ. SSMDSQs generate

perfectly balanced descriptions and outperform the MDUSQ

of [10] in conventional entropy-constrained coding [12]. Sec-

ondly, when both descriptions are partially or fully received,

a novel cross-decoding mechanism is employed to signif-

icantly reduce the required bitrate compared to separately

decoding the descriptions. In contrast to [9], our proposed

cross-decoding exploits the correlation that exists between

the coded bit-planes as well as the inter-description corre-

lation. Thirdly, our design also employs a state-of-the-art



X

i
q

j
q

1

1
Q

− 1
X̂

0
X̂

2
X̂

1

0
Q

−

1

2
Q

−

Y

Fig. 1. High-level block diagram of the proposed MD-WZ coding system.

online correlation channel estimation (CCE) method [13].

The remainder of this paper is organized as follows: Sec-

tion 2 presents the specifics of the proposed hybrid MD-WZ

coding system. The proposed system is evaluated against a

contemporary design in Section 3. Finally, Section 4 draws

the conclusions of this work.

2. HYBRID MD-WZ CODING SYSTEM

Figure 1 illustrates the high-level block diagram of the pro-

posed MD-WZ coding system. At the encoder, generated

scalable descriptions are separately encoded using layered

LDPCA-based WZ coding [11]. The decoder can decode

these descriptions with the help of the SI either separately or

jointly, using a cross-decoding mechanism. The separate de-

coding of descriptions can be directly inferred from [11]. The

cross-decoding can exploit the inter-description correlation,

which is presented next.

2.1. Inter-description correlation

The correlation between the descriptions comes from the in-

dex assignment (IA) based mapping in MDSQ [8]. In an em-

bedded IA [10, 14, 15], side and central indices at different

embedded levels can be created by grouping or by splitting

the indices of a fixed-rate IA [12], resulting in scalable side

and central quantizers.

Figure 2 shows an example of an embedded IA, where

central indices {1, 2, ..., 19} are mapped to a pair of side

quantizers indices (qpi ,qpj ), where p ∈ {1, 2, . . . , P} de-

notes the refinement level and P is the number of bit-

planes. Given that a source sample is quantized to a cer-

tain first side index qpi , we can derive some statistical infor-

mation about its corresponding second side index qpj . Let

q3i = 011, then q3j ∈ {010, 011, 100, 101} (see figure 2).

Roughly assuming a uniform input source distribution, one

can say: p(q3j = 010|q3i = 011) = 1/4, or conversely

p(q3i = 011|q3j = 010) = 1/2. This type of estimate can be
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Fig. 2. An example of an embedded IA matrix for a scalable

MDSQ. The different line styles correspond to the different

quantization levels. The quantization indices are coded from

left-to-right and top-to-bottom using the natural binary code.

computed for any p, leading to a quantitative measure of the

correlation between the two descriptions at each quantization

level.

2.2. Cross-decoding of two descriptions

Since the descriptions are scalable, transmission scenarios

wherein descriptions are only partially received can occur.

Thus, the joint decoding mechanism must exploit what-

ever correlation may exist between the received portions

of the descriptions. For non-scalable systems, cross-decoding

schemes for MDSQs [8] were first presented in [16, 17]. The

work of [9] extends these earlier ideas to scalable coding

frameworks using the MDUSQ of [10]. In this work we em-

ploy our recently proposed SSMDSQs [12], design a specific

cross-decoding scheme for such quantizers and demonstrate

that the proposed solution yields notable gains over [9].

Let xn and yn denote a block of n source samples and

the receiver’s SI, respectively. Let ur,n
(s) , s = 1, 2, denote two

description of xn coded at r bps (bits per sample) per chan-

nel. Starting from the most significant one, bit-planes of each

description are separately WZ encoded using LDPCA syn-



drome binning. This results in two scalable bitstreams. At

the receiver, two side decoders attempt to iteratively decode

their respective bitstreams at the various puncturing rates of

the employed LDPCA code using the SI. These decodings

can occur either independently or, if both descriptions are re-

ceived up to some refinement levels, jointly. The latter case is

referred to as cross-decoding, wherein the two side decoders

exchange information in order to exploit the inter-description

correlation, described in Section 2.1. This results in a better

rate-distortion (RD) performance compared to the indepen-

dent decoding case.

When the estimates of the source bits of the first decoder

converge, the resulting log-likelihood ratios (LLRs) at the

variable nodes of the corresponding Tanner graph can be seen

as extrinsic information that can be sent to the other side

decoder as a priori information. Let u
(s)
p be the bit in the p’th

bit-plane for one particular sample xk, with k ∈ {1, 2, . . . , n}
and n being the block size. The decoder can determine the

probability that the corresponding bit u
(1)
p is either 0 or 1 as:

P
(
u(1)
p = 0

)
=

exp
(
−L

out,(1)
k

)

1 + exp
(
−L

out,(1)
k

) (1)

P
(
u(1)
p = 1

)
=

exp
(
L
out,(1)
k

)

1 + exp
(
L
out,(1)
k

) (2)

where L
out,(1)
k are the LLRs at the variable nodes of the first

decoder. From the IA matrix, we can directly compute the

following conditional probabilities [9]:

P
(
u(2)
p = c|u(1)

p = 1
)
=

∑
m:bp(m)=1
n:bp(n)=c

P (j = n|i = m) (3)

P
(
u(2)
p = c|u(1)

p = 0
)
=

∑
m:bp(m)=0
n:bp(n)=c

P (j = n|i = m) (4)

where m,n ∈ {1, . . . ,M}, M is the alphabet size of the

side indices (balanced case), and bp(l) is the p’th bit in bi-

nary representation of the quantizer index l. i and j are the

row and column indices of the IA matrix for sides 1 and 2, re-

spectively. Conditional probabilities in the IA matrix can be

determined as explained in Section 2.1. If the source distribu-

tion is known, true conditional probabilities can be obtained.

For example, in [18] the coding system is applied to wavelet

transformed video frames, assuming Gaussian or Laplacian

distributions depending on the subband to which a particular

coefficient belongs.

Using equations (1-4) and the total probability theorem

we can compute the a priori information for the second side

decoder as:

L
in,(2)
k = log

P
(
u
(2)
p = 0

)

P
(
u
(2)
p = 1

) (5)

The second side decoder adds this prior information to the

LLRs obtained from the side information to compute the ag-

gregate LLRs, i.e.,

L
(2)
k = log

P
(
u
(2)
p = 0|yk

)

P
(
u
(2)
p = 1|yk

) + L
in,(2)
k (6)

2.3. Proposed cross-decoding scheme

Equations (3) and (4) only consider the bit-plane that is cur-
rently being decoded. Therefore, the lookup procedure (Sec-

tion 2.1) in the IA matrix considers cells that may have al-

ready been ruled out by decoding previous bit-planes. In

our proposed design, to which we refer as embedded cross-
decoding, we perform an ”embedded” lookup, hereby also

considering all bit-planes that have already been successfully

decoded. Formally, the summation in equations (3) and (4) is

changed as follows:

P
(
u(2)
p = c|u(1)

p = 1
)
=

∑

m:bp(m)=1∧∀k<p:bk(m)=u
(1)
k

n:bp(n)=c∧∀k<p:bk(n)=u
(2)
k

P (j = n|i = m) (7)

P
(
u(2)
p = c|u(1)

p = 0
)
=

∑

m:bp(m)=0∧∀k<p:bk(m)=u
(1)
k

n:bp(n)=c∧∀k<p:bk(n)=u
(2)
k

P (j = n|i = m) (8)

Here, the summation indices cover the cells at the p’th bit-

plane in the embedded IA matrix, but in contrast to equations

(3) and (4) from [9], the summation only considers cells at

levels k < p that were decoded already and for which the

value is therefore known. This reduces the uncertainty on the

current bit-plane.

3. EXPERIMENTAL EVALUATION

The proposed system is evaluated on randomly generated data

in the case when the source X and the SI Y are Gaussian ran-

dom variables related via X = Y + Z, where Z is the cor-

relation noise. The noise variance is estimated online using

our recently proposed maximum likelihood estimation tech-

nique [13]. The employed LDPCA code works on blocks of

1584 samples quantized using 5 bit-planes at each side. The

LDPCA decoder is limited to 100 iterations per puncturing

rate. We report the bitrate and reconstruction quality per bit-

plane, averaged out over 50 encoded blocks. The reconstruc-

tion quality is measured by the signal-to-noise ratio (SNR),

computed as: SNR = 10 · log10(σ2
X/E[(X − X̂)2]).



In Figure 3, the RD performance of the proposed embed-

ded cross-decoding is compared to the regular cross-decoding

method of [9] as well as to the separate decoding of both de-

scriptions. In this experiment an SSMDSQ with 5 diagonals

was employed. The figure shows that our proposed embed-

ded cross-decoding scheme clearly outperforms the two oth-

ers. By construction it is always at least as good as separate

decoding, at the cost of increased complexity. The regular

cross-decoding seems to bring little to no coding gains at all

compared to separate decoding. The reason is that a uniform

distribution in the embedded IA matrix is assumed instead of

the actual source distribution to compute the conditional es-

timates P (j|i). Similar to [18], it is expected that using the

source pdf will lead to an additional coding gain for both reg-

ular and embedded cross-decoding.

Using the Bjontegard metric [19], we find that the pro-

posed embedded cross-decoding scheme is on average 0.66
dB better compared to the separate decoding of the two de-

scriptions. Similar results were observed in simulations with

different system parameters - source distribution and vari-

ance, degree of inter-source correlation, number of quantiza-

tion levels and block size.

Figure 4 depicts the RD comparison of the MDUSQ [10],

employed in the approach of [9, 18], versus the SSMDSQ

[12] when both are integrated in the proposed MD-WZ cod-

ing framework with embedded cross-decoding. The experi-

mental setup is kept the same as in Figure 3. We find that for

both the central and the Granular SNRs, the SSMDSQs ex-

hibit a notable improvement in RD performance compared to

MDUSQs.

Figure 5 reports the bitrate and average Granular SNR

per bit-plane for different correlation-SNR (CSNR) values.

The CSNR is a measure of the SI quality and is defined as:

CSNR = 10 · log10(σ2
Y /σ

2
Z). Clearly, SSMDSQ saves con-

siderable bitrate with respect to MDUSQ for roughly the same

Granular SNR values.

4. CONCLUSIONS

This paper introduces a novel MD-WZ coding framework

that is able to offer both the low complexity encoding and

error-resilience properties that come from the DSC and MDC

paradigms, respectively. In contrast to the state-of-the-art,

the proposed embedded cross-decoding method exploits the

knowledge of previously decoded bit-planes yielding a better

RD performance. We have shown that, in our framework,

SSMDSQs can achieve a better RD performance compared to

MDUSQs. This is of particular significance when the packet-

loss rate on the communication channels is not known and

perfectly balanced descriptions are desired.

Fig. 3. Comparison of the different decoding schemes.
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SNR of the central reconstruction and Granular SNR are plot-
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