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ABSTRACT
We present an improved state-space frequency-domain acoustic
echo canceler (AEC), which makes use of Kalman filtering theory to
achieve very good convergence performance, particularly in double
talk. Our contribution can be considered threefold: The proposed
approach is designed to suit an automotive wideband overlap-save
(OLS) setup, to operate best in this distinctive use case. Second,
we provide a temporal smoothing and overestimation approach for
two particular noise covariance matrices to improve echo return
loss enhancement (ERLE) performance. Furthermore, we integrate
an adapted perceptually transparent decorrelation preprocessor,
which makes use of human insensitivity against appropriately cho-
sen frequency-selective phase modulation, to improve robustness
against far-end impulse response changes.

Index Terms— AEC, automotive, wideband, FDAF, decorrela-
tion preprocessor

1. INTRODUCTION

Speech telecommunication has to cope with a number of possible
sources for quality degradation, with disturbing acoustic echo as one
of the prominent ones. To deal with that, acoustic echo canceler
(AEC) technology is widely used. For this purpose oftentimes adap-
tive filters [1, 2] are employed to estimate an electric replica of the
near-end echo path to reduce the disturbing echo component from
the microphone signal by subtraction.

As hands-free telecommunication systems evolved to wideband
HD voice services over the past years, new challenges came up, such
as tougher quality requirements or higher computational complex-
ity [3]. Whereas early systems commonly used time-domain algo-
rithms of type normalized least mean squares (NLMS) [4] or simi-
lar, performance restrictions due to the higher bandwidth and poor
convergence performance inspired block-based approaches [5–7] or
convergence-optimized approaches [7], like recursive least squares
(RLS) [8, 9] or affine projection (AP) [4, 10, 11] algorithms. To
improve the ability to track changes of the impulse responses, of-
tentimes use of Kalman filter theory [7, 12] is made. Due to the
fact, that parameters such as step size can be frequency-dependent,
improvement in terms of performance, robustness, or convergence
speed can be expected if at least the parameter adaptation is made
in the frequency domain, hence resulting in so-called frequency-
domain adaptive filtering (FDAF) algorithms [13].

If more than one channel is present, which might be the case
when listening to FM radio while hands-free speech is acquired
for automatic speech recognition or telephony, or because a multi-
channel telecommunication system is used (e.g., for teleconferenc-
ing), the AEC also has to operate in a plurality of channels. This

is to estimate accurate replicas of the echo path signals in a unique
way, which means, that the estimated filters match the correspond-
ing real echo path impulse responses. In case the excitation signals
are highly correlated, however, in general only the overall error
energy is minimized, which does not necessarily imply a unique so-
lution. Due to this, oftentimes decorrelation preprocessors are used
to decorrelate the excitation signals, hence resulting in an improved
misalignment score [14–16].

Since telecommunication services are of widespread importance
in cars, automotive hands-free systems and therefore high-quality
AEC algorithms are a demanded feature and even mandatory in
many countries. To allow for conversations of high technical quality
and low driver distraction, full-duplex capabilities are desirable [17].
This is only achievable, if the AEC algorithm provides robustness
against near-end disturbances as they are not only present during
double-talk periods [18, 19].

Our approach is based on [20], however, with several modifica-
tions and extensions being made. The algorithm has been adapted
to an automotive stereo AEC approach with HD voice capabilities.
Along with the state-space frequency-domain Kalman methodology,
a perceptually optimized decorrelation preprocessor offers great ro-
bustness against changes of the far-end acoustics, very good track-
ing and convergence capabilities, and excellent double-talk perfor-
mance. Temporal smoothing of the measurement noise covariance
matrices and tuning of the process noise covariance matrices further
increases echo return loss enhancement (ERLE) performance.

The organization of the paper is as follows: Section 2 describes
a stereo acoustic echo canceler based on state-space frequency-
domain adaptive filtering. A perceptually motivated decorrelation
preprocessor is introduced to improve robustness against far-end
acoustics changes. In Section 3 noise and speech simulation results
for an automotive application are shown which put the proposed
approach in relation to two baseline approaches. We then conclude
our findings in Section 4.

2. STEREO FDAF

This section introduces the proposed algorithmic approach for stereo
AEC and its underlying system model. References to two baseline
approaches [20, 21] are made and a perceptually motivated decorre-
lation preprocessor is introduced.

2.1. System Model

In Fig. 1 the system model of a common stereo AEC system is de-
picted, with two loudspeakers and in this case one near-end micro-
phone in the receiving room—modeled by two echo path impulse
responses h1pnq and h2pnq, with discrete sample index n—and two



far-end microphones in the transmission room. The acoustic paths
between far-end speaker and the two corresponding microphones are
modeled by the impulse responses h11pnq and h12pnq. At the near-end
/ far-end microphones a linear superposition of speech components
(spnq / s11pnq, s12pnq), noise components (npnq / n11pnq, n12pnq), and
echo components (d1pnq, d2pnq) is considered.

Two finite impulse response (FIR) filters take the loudspeaker
signals (x1pnq, x2pnq) into account as reference to adapt their filter
coefficients (ĥ1pnq, ĥ2pnq) by means of the error signal epnq, which
is a result of the difference between the near-end microphone signal
ypnq “

`

d1pnq ` d2pnq
˘

` spnq ` npnq and the estimated echo
signals d̂jpnq “ xjpnq ˚ ĥjpnq, with channel index j P t1, 2u, hats
denoting estimated variables, and ˚ denoting a convolution.

We write vector and matrix entities as bold letters, scalars as nor-
mal letters, frequency-domain entities or constants as capital letters.

2.2. Algorithmic Approach

Notations and Initializations

For both channels the corresponding loudspeaker signal frame

xjp`q “
”

xj
`

p`´1q ¨R
˘

, . . . ,

xj
`

p`´1q ¨R`K´R´1
˘

,

xj
`

p`´1q ¨R`K´R
˘

,

. . . , xj
`

p`´1q ¨R`K´1
˘

ıT

(1)

is initially composed as a vector of K´R zeros followed by the first
R samples of the speaker signals, with frame index ` P t1, 2, . . .u,
frame shiftR, discrete Fourier transform (DFT) lengthK, and trans-
pose operator T .

By applying the K-point DFT matrix FK K̂ and writing the re-
sult into a matrix main diagonal, the DFT-domain loudspeaker signal
of channel j results in the matrix

Xjp`q “ diag
 

FK K̂ ¨ xjp`q
(

. (2)

The Rˆ 1 near-end microphone signal yp`q “
“

y
`

p`´ 1q ¨

R
˘

, . . . , y
`

p`́ 1q¨R`R 1́
˘‰T , however, is first multiplied with the

KˆR overlap-save (OLS) projection matrix Q “ p0R̂ K Ŕ IR̂ Rq
T ,

consisting of the zero matrix 0 and unity matrix I, and then being
transformed into the DFT domain by applying FK K̂ , leading to the
Kˆ1 vector

Yp`q “ FK K̂Q ¨ yp`q. (3)

Furthermore, the first-order Markov model forgetting factors
Aj , the DFT-domain AEC filter coefficients Ĥjp`q, state error
covariance submatrices Pj,ip`q, and the process noise covariance
submatrices Ψ∆

j,ip`q (cf. [20]) are initialized according to

Aj “ 0.998

Ĥjp`“0q “ 0K 1̂

+

j P t1, 2u

Pj,ip`“0q “ IK K̂

Ψ∆
j,ip`“0q “ 0K K̂

+

@j, i P t1, 2u.

(4)

Now a prediction step and a correction step are carried out in
alternating fashion for all frames ` P t1, 2, . . .u.

Fig. 1. System model of a stereo AEC system.

Prediction Step

The state of the AEC filter coefficients of channel j is predicted ac-
cording to

Ĥ`
j p`q “ AjĤjp`´1q @j , (5)

with p¨q` denoting a predicted variable. The predicted state error
covariances P`j,i are computed for the intra-channel (j “ i) and
cross-channel (j ‰ i) case according to:

P`1,1p`q “ A1A1P1,1p`´1q ` λΨ∆
1,1p`´1q

P`1,2p`q “ A1A2P1,2p`´1q ` λΨ∆
1,2p`´1q

P`2,1p`q “ A2A1P2,1p`´1q ` λΨ∆
2,1p`´1q

P`2,2p`q “ A2A2P2,2p`´1q ` λΨ∆
2,2p`´1q,

(6)

with an overestimation factor λ.
Following [20], only the intra-channel process noise covariance

submatrices Ψ∆
1,1 and Ψ∆

2,2 are updated:

Ψ∆
1,1p`´1q “ p1´A2

1q
“

Ĥ1p`´1qĤH
1 p`´1q `P1,1p`´1q

‰

Ψ∆
2,2p`´1q “ p1´A2

2q
“

Ĥ2p`´1qĤH
2 p`´1q `P2,2p`´1q

‰

(7)

with p¨qH being the Hermitian transpose.

Correction Step

To incorporate the measurement at the current frame instance, the
predicted filter coefficient states are corrected by the DFT-domain
error signals, weighted by the corresponding Kalman gain diagonal
matrices Kjp`q

Ĥ1p`q “ Ĥ`
1 p`q `K1p`q ¨

“

Yp`q ´
`

GX1p`qĤ
`
1 p`q

`GX2p`qĤ
`
2 p`q

˘‰

Ĥ2p`q “ Ĥ`
2 p`q `K2p`q ¨

“

Yp`q ´
`

GX1p`qĤ
`
1 p`q

`GX2p`qĤ
`
2 p`q

˘‰

(8)

with overlap-save constraint G “ FK K̂QQTF´1
K K̂ .

The Kalman gains are calculated as

K1p`q “ µ1,1p`qX
H
1 p`q ` µ1,2p`qX

H
2 p`q

K2p`q “ µ2,1p`qX
H
1 p`q ` µ2,2p`qX

H
2 p`q

, (9)



making use of the near-optimal step-size diagonal matrix µj,i:

µ1,1p`q “ R{KP`1,1p`qD
´1
p`q

µ1,2p`q “ R{KP`1,2p`qD
´1
p`q

µ2,1p`q “ R{KP`2,1p`qD
´1
p`q

µ2,2p`q “ R{KP`2,2p`qD
´1
p`q

(10)

The diagonality of P`j,ip`q renders Dp`q diagonal, too, and thus sim-
plifies its inversion:

Dp`q “ R{K
“

X1p`qP
`
1,1p`qX

H
1 p`q

`X1p`qP
`
1,2p`qX

H
2 p`q

`X2p`qP
`
2,1p`qX

H
1 p`q

`X2p`qP
`
2,2p`qX

H
2 p`q

‰

`ΨS
p`q

(11)

We calculate the measurement noise covariance matrix ΨS
p`q in

turn as

ΨS
p`q “p1´βq ¨

´

Ẽp`qẼH
p`q

`R{K
“

X1p`qP
`
1,1p`qX

H
1 p`q

`X1p`qP
`
1,2p`qX

H
2 p`q

`X2p`qP
`
2,1p`qX

H
1 p`q

`X2p`qP
`
2,2p`qX

H
2 p`q

‰

¯

` β ¨ΨS
p`´1q

(12)

by means of smoothing over time, with empirical smoothing con-
stant β “ 0.5, and the preliminary error vector

Ẽp`q “ Yp`q ´
“

GX1p`qĤ
`
1 p`q `GX2p`qĤ

`
2 p`q

‰

. (13)

At this point the recursion has come to an end and (8) is completely
depicted. By the help of (6) and (9) the predicted state error covari-
ance matrices can be corrected to

P1,1p`q “ P`1,1p`q ´ R{KK1p`q
“

X1p`qP
`
1,1p`q `X2p`qP

`
2,1p`q

‰

P1,2p`q “ P`1,2p`q ´ R{KK1p`q
“

X1p`qP
`
1,2p`q `X2p`qP

`
2,2p`q

‰

P2,1p`q “ P`2,1p`q ´ R{KK2p`q
“

X1p`qP
`
1,1p`q `X2p`qP

`
2,1p`q

‰

P2,2p`q “ P`2,2p`q ´ R{KK2p`q
“

X1p`qP
`
1,2p`q `X2p`qP

`
2,2p`q

‰

.

(14)

Finally the error (i.e., enhanced) signal can be determined as follows

Ep`q “ Yp`q ´
“

GX1p`qĤ1p`q `GX2p`qĤ2p`q
‰

. (15)

2.3. Decorrelation Preprocessor

As already known from literature [14, 15], a non-uniqueness prob-
lem exists for multi-channel AEC, which leads to sub-optimal filter
adaptation if the loudspeaker signals are highly correlated. In such
a case, the filters converge to a state which minimizes the energy of
the common error signal epnq, not necessarily identifying the echo
path impulse responses hjpnq. Therefore, a change of the transmis-
sion room impulse responses will lead to a distinct drop of conver-
gence. Different preprocessing schemes exist, which try to optimize
the trade-off between convergence enhancement, subjective sound
quality, and complexity, by using addition of uncorrelated signals,
decorrelation filters, frequency shifting, or comb filters [14, 16].

We have chosen a perceptually motivated decorrelation prepro-
cessor which uses phase modulation of opposite direction to decor-
relate the two loudspeaker signals xjpnq, j P t1, 2u, as proposed
in [16]. In contrast to, e.g., a classical nonlinear filter, artifacts are far
less audible. A modulation frequency of fm “ 1Hz was used, with
a frequency-dependent modulation amplitude of˘10˝ below 1 kHz,
a linear increase up to ˘40˝ at 2 kHz, a further linear increase up to
˘90˝ at 2.5 kHz, and a constant ˘90˝ above 2.5 kHz. This is done
to reduce the perceived signal distortion whilst still decorrelating as
much as possible where human perception is mostly insensitive to
phase changes.

2.4. Distinction Against Baseline Approaches

The proposed approach is derived from the submatrix-diagonal
multichannel state-space frequency-domain adaptive filter (SD-
MCSSFDAF) [20] and its variationally-diagonalized version with
implicit omission of cross-channel terms VD-MCSSFDAF [21],
whereas in our case the intended use case is an automotive setup and
additional modifications have been made.

Unlike in [20, 21], a perceptually motivated decorrelation ap-
proach described in [16] has been modified so that it can be used in
our DFT-processing environment. Therefore, flat-top Hann window-
ing has been used to keep artifacts at a minimum. To improve the
convergence speed of the proposed approach, an empirical overesti-
mation factor of λ “ 1.5 for Ψ∆

p`q was introduced (cf. (6)). To
also improve the ERLE in the converged state, the parameter ΨS

p`q
is recursively smoothed over time in (12) using β “ 0.5. Further-
more, the filter coefficients in (8) are constraint to length N to avoid
circular artifacts.

In the calculation of ΨS
p`q, as it is shown in [21, eq. (46)] or

in [22, eq. (23)], the state error covariances Pj,ip`q are needed. As
these are not yet available, for our implementation of [20] and [21]
the predicted terms P`j,ip`q are used instead (as in (12)).

3. PERFORMANCE EVALUATION

To grade the performance of the proposed approach in contrast to
the baseline approaches, simulations have been carried out, adopting
parameters from an automotive setup.

3.1. Automotive Simulation Setup

Simulations for an automotive use case have been carried out. In
order to provide best reproducibility of our results, we decided to
randomly generate all impulse responses and to equip them with ex-
ponential energy decay, so that a reverberation time of T60 “ 50ms
has been achieved. In the transmission room a common white noise
or speech signal is being convolved with the far-end impulse re-
sponses h11pnq and h12pnq to yield the far-end speech components
s11pnq and s12pnq with an amplitude of ´26 dBov each at the mi-
crophones. After adding uncorrelated white Gaussian sensor noise
of amplitude ´66 dBov, the loudspeaker signals xjpnq “

`

s1pnq ˚

h1jpnq
˘

`n1jpnq, j P t1, 2u, are available as AEC filter reference sig-
nals and receiving room excitation signals. To provide comparabil-
ity amongst all evaluated approaches, a decorrelation of xjpnq takes
place as soon as the far-end microphone signals are available. The
excitation signals are convolved with the normalized echo path im-
pulse responses hjpnq individually, to achieve the echo components
djpnq. Together with the near-end speech component spnq with am-
plitude ´26 dBov and the near-end car noise component npnq with
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Fig. 2. Convergence behavior during white Gaussian noise exci-
tation at -26 dBov per channel and near-end car noise at -41 dBov.
Far-end impulse response switches (transmission room) indicated by
˛, near-end impulse response switches indicated by ‹.

amplitude ´41 dBov the microphone signal ypnq is subject to echo
cancellation.

To examine both optimal and realistic scenarios a far-end single
talk setup with white noise excitation (Fig. 2) and a speech setup
with single and double talk periods (Fig. 3) have been chosen. Both
setups include near-end car noise with amplitude -41 dBov. To repre-
sent changing acoustic conditions of the transmission and receiving
room, the far-end impulse responses are switched to newly generated
ones at times denoted by ˛, whereas the time of a near-end impulse
response switch is denoted by ‹.

The parametrization chosen for all three approaches was: For-
getting factors Aj “ 0.998, constants λ “ 1.5 and β “ 0.5,
frame shift R “ 256, DFT length K “ 1024, and sample frequency
fs “ 16 kHz. In so doing, a maximum AEC filter impulse response
length of N “ K ´ R “ 768 samples, corresponding to 48ms, is
achievable. The length of the impulse responses hjpnq and h1jpnq
equals their reverberation time of T60 “ 50ms.

3.2. Discussion

In Fig. 2 the convergence behavior of the proposed approach is com-
pared with the two baseline approaches [20, 21] described in Sec-
tion 2.4. It can be seen, that initial convergence1 is at a very good
level of around 1–1.5 s for both the proposed approach and VD-
MCSSFDAF. The SD-MCSSFDAF, however, takes about 2 s to con-
verge. All three approaches saturate to about 29 dB ERLE. The first
far-end impulse response change (symbol ˛ on the time axis) reveals
the non-uniqueness problem, since all three approaches decline in
ERLE, whereas the proposed approach shows more robustness com-
pared to the baselines. This is also apparent from reconvergence
speed with only the proposed approach being able to reconverge to
a full extent two seconds after the first switch. The following near-
end impulse response switch (symbol ‹) again leads to a decline in
ERLE, to now 0 dB for all approaches, from which the proposed ap-
proach is able to reconverge1 in 2.5 s and the baseline approaches
in about 3.5 s. The second far-end impulse response change (sym-
bol ˛ again) shows characteristics for the three approaches as before,

1The time needed to reach an ERLE of 20 dB. In this paper, ERLE is
computed as shown in [20].
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Fig. 3. Alternating / overlapping speech periods on the far and near
end, each with amplitude -26 dBov (per channel). Near-end car noise
at -41 dBov. Far-end impulse response switches (transmission room)
indicated by ˛, near-end impulse response switches indicated by ‹.

whereas the VD-MCSSFDAF reacts even somewhat worse than be-
fore.

Fig. 3 shows the performance of all three approaches during a re-
alistic conversation with speech at both ends, having some short pe-
riods of double talk. In this setup the good convergence and double-
talk performance of the proposed approach is confirmed, only being
outperformed by the VD-MCSSFDAF approach during the first sec-
ond of initial convergence.

In the normalized misalignment2 plots of Fig. 2 and Fig. 3 the
effects of the proposed decorrelation approach of Section 2.3 can be
clearly seen. The proposed approach outperforms both baselines by
up to 5 dB in terms of misalignment, leading to higher robustness
against far and near end impulse response changes.

4. CONCLUSIONS

We have proposed an automotive wideband stereo AEC algorithm,
based on state-space frequency-domain adaptive Kalman filtering
[20, 21], which excels in terms of performance and speech quality
specifically during double talk, so that complete full-duplex capabil-
ities are given. A good initial convergence speed of about 1.5 s and of
about 2.5 s for the reconvergence case could be achieved even during
double talk, so that reconvergence times could be reduced in com-
parison to the baseline approaches. Whereas computational com-
plexity is higher compared to the variationally-diagonalized MC-
SSFDAF [21], it is on par with the SD-MCSSFDAF algorithm [20]
in O notation.

Very high robustness against far-end impulse response changes
is achieved by making use of a decorrelation preprocessor, which
is able to effectively encounter the non-uniqueness problem with-
out introducing perceptual disturbances to the loudspeaker signals:
An improvement of up to 5 dB in terms of misalignment could be
achieved, which in turn offers a greater robustness against the effects
of a moving far-end speaker. The shown convergence and double-
talk performance of the proposed approach can be considered very
good for this automotive setting with high echo coupling and near-
end car noise.

2We compute the normalized total misalignment of both channels accord-
ing to Dpnq “ 10 log

”

ř2
j“1 ||hj´ĥj ||

2
{
ř2

j“1 ||hj ||
2

ı

.



REFERENCES

[1] B. Widrow and P. N. Stearns, Adaptive Signal Processing,
1st ed. Englewood Cliffs, NJ: Prentice Hall, Mar. 1985.

[2] S. Haykin, Adaptive Filter Theory, 4th ed. Prentice Hall In-
ternational, Sep. 2002.

[3] C. Beaugeant, M. Schönle, and I. Varga, “Challenges of
16 kHz in Acoustic Pre- and Post-Processing for Terminals,”
IEEE Communications Magazine, vol. 44, no. 5, pp. 98–104,
2006.

[4] H.-C. Shin, A. Sayed, and W.-J. Song, “Variable Step-Size
NLMS and Affine Projection Algorithms,” IEEE Signal Pro-
cessing Letters, vol. 11, no. 2, pp. 132–135, 2004.

[5] J. Lee and C. Un, “Block Realization of Multirate Adaptive
Digital Filters,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 34, no. 1, pp. 105–117, 1986.

[6] J. J. Shynk, “Frequency-Domain and Multirate Adaptive Fil-
tering,” IEEE Signal Processing Magazine, vol. 9, no. 1, pp.
14–37, 1992.
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