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ABSTRACT

In this work, the problem of applying Zero Padding (ZP) as

redundancy in multicarrier communications is addressed. To

this goal, a general matrix formulation to recover the trans-

mitted symbol when ZP is used, is provided for any kind of

discrete transform employed at both the transmitter and the

receiver. The obtained result not only generalizes some previ-

ously reported techniques, such as discrete Fourier transform-

based transceivers, but it also allows to extend it to other kind

of transforms (e.g., discrete trigonometric transforms). As

a particular case study, the use of discrete cosine transform

Type-II even (DCT2e) is analyzed. In this case, a simple

structure that recover the transmitted symbol at the receiver is

also shown. Additionally, the expressions of the one-tap per

subcarrier coefficients, also using the DCT2e, are derived.

Index Terms— Multicarrier Modulation (MCM), Zero

padding (ZP), Discrete Fourier Transform (DFT), Discrete

Cosine Transform (DCT), Orthogonal Frequency-Division

Multiplexing (OFDM).

1. INTRODUCTION

In digital multicarrier communications, Zero Padding (ZP) is

one form of redundancy inserted in the transmitted sequence

to avoid interblock interference. In DFT-Based OFDM sys-

tems, the effect of ZP has been previously studied in [1]. In

a recent work [2], ZP has been also analyzed when using the

Type-IV even Discrete Cosine Transform (DCT4e). In both

approaches, some procedures have been proposed to handle

the received vector, in order to recover the original signal.

In this work, we present a general formulation using ma-

trices when ZP is inserted as redundancy in the transmitted

sequence. We address the problem of obtaining a condition

under which the original data can be reconstructed via one-

tap per subcarrier frequency-domain equalizer (FEQ) at the

receiver.

Furthermore, we apply it to a very interesting case, say,

when Discrete Cosine Transform Type-II even (DCT2e) is
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used at both the transmiter and the receiver sides. DCT2e

has been widely used in the context of multicarrier modula-

tion (MCM), and it has been analyzed in many works as an

alternative to DFT, due to its good properties (e.g., good per-

formance under carrier frequency offset) [3–7]. So it is an in-

teresting problem to be considered: How to handle ZP when

using DCT2e in the transmission system. In [4], the effect of

ZP is analyzed when using DCT2e over fast-fading channels,

in order to suppress inter-symbol-interference (ISI); but there

is a lack of a procedure which guarantees the reconstruction of

the original signal by means of FEQ. In this work we provide

that procedure, and show that it is as simple as theoretically

sound. It is one of the main contributions of this paper.

This paper is organized as follows: In Section 2, we

present the general formulation for the use of ZP jointly with

any discrete transform in MCM. We also show that from this

general result we derive some previously known techniques.

In Section 3 we address the problem of using ZP with DCT2e,

and obtain a new procedure for its implementation with ZP.

We also present a simple expression for the 1-tap equalizers

in this case. Section 4 contains the main conclusions.

Notation: Throughout the paper, superscript T stands for

transposition, Ik and Jk denote respectively the identity ma-

trix and the antidiagonal permutation matrix of order k, and 0

is the null matrix.

2. GENERAL FORMULATION OF THE ZP

PROCEDURE IN MCM

We consider a channel whose impulse response is hch =
(h

−ν , · · · , h
−1, h0, h1, · · · , hν), of length 2ν + 1. Let x be

the information symbol of size N and xzp denote the zero-

padded extension of the original symbol; if we append 4ν ze-

ros to x, then xzp has length N +4ν. If we transmit xzp, then

the receiving symbol yzp may be written in matricial form as

yzp = H · xzp + n where n is a term related to the additive

noise, and the transmission matrix H is the Toeplitz matrix of



size (N + 2ν) × (N + 4ν) defined as
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As 4ν coefficients of xzp are null, we can rewrite this expres-

sion as yzp = Hm · x + n where Hm is formed by the N
columns of H which are not multiplied by the 4ν null com-

ponents of xzp. Hence, Hm has size (N + 2ν) × N . The

received symbol yzp has length N + 2ν and notice that it

equals the convolution of hch with the symbol x. We would

like to modify yzp in order to recover x.
With this in mind, we propose the general scheme in Fig.

1: Let us modify yzp in order to get y = M · yzp of length

N . This means that M is an N × (N + 2ν) matrix, and

y = M · yzp = M · Hm · x + M · n. (2)

Thus, the whole transformation can be rewritten as

y = Hequiv · x + M · n (3)

where Hequiv = M · Hm is the equivalent channel matrix,

which is a square matrix of order N .

Now, if we apply a discrete transform T−1 at the trans-

mitter and T at the receiver (as in Fig.1), the aim is to ob-

tain M such that Hequiv is diagonalized by T. In that case,

Hequiv = T−1 · D · T with D diagonal, and

y = T−1 · D · T · x + M · n

⇒ T · y = D · T · x + T · M · n.

By denoting Y := T · y, X := T · x, and N := T · M · n
we get the scheme

Y = D · X + N

where D = diag (d0, ..., dN−1) contains the eigenvalues of

Hequiv . If they are nonzero, we obtain an estimation of X,

X̂k = Yk/dk

by means of the 1-tap filter dk (see Fig. 1).

In summary, the question is: How to design M such that

the matrix Hequiv = M · Hm can be diagonalized via a

prescribed transformation T? Of course, it depends on the

choice of the discrete transformation T. Let us recall two

cases studied in the literature in the next subsections.

2.1. ZP-OFDM-OLA

The use of ZP for DFT-based MCM is studied in [1]. The

authors propose the following procedure when using DFT as

the transform T: First, the original vector symbol is zero–

padded before transmission; then, at the receiver it suffices

to make the modification y = M · yzp to the received vector,

which consists on taking the last 2ν components of yzp and

summing them to the first 2ν components of yzp. In other

words, the procedure is an overlap-and-add (OLA), and it is

performed by the modification matrix

M =

[

I2ν 0 I2ν

0 IN−2ν 0

]

(4)

In this way, it is guaranteed that Hequiv = M · Hm is

a circulant matrix of order N , hence diagonalizable by the

DFT. Moreover, its eigenvalues dk are computed via the N -

point DFT of the zero-padded filter h. This is the summary of

the so called ZP-OFDM-OLA algorithm, which is a particular

case of the proposed general scheme in Fig. 1, when choosing

T =DFT, and setting the block given by matrix M of Eq. (4)

at the receiver.

2.2. ZP-DCT4-MIAS

In [2], the use of ZP for Discrete Cosine Transform Type-IV

even (DCT4e)-based MCM is studied. As the filter h must

be symmetric (h
−k = hk, k = 1, ..., ν) , it is needed to in-

clude a prefilter w as first stage at the receiver (see Fig. 1)

as explained in [3]. With this assumption, it is shown that it

suffices to append 2ν zeros to the left and to the right of the

original symbol x in order to get xzp. This means that Hm is

the matrix whose columns are the N central columns of H:

Hm =
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. (5)

Then, the received block is multiplied by a matrix defined as

M =





Jν Iν 0 0 0

0 0 IN−2ν 0 0

0 0 0 Iν −Jν



 . (6)

This multiplication y = M · yzp can be explained as fol-

lows: The first ν components of yzp are symmetrized as in

a mirror, and added to their adjacent (next) ν components; in

an analogous way, the last ν components of yzp are also sym-

metrized as in a mirror, and substracted from their adjacent
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Fig. 1. Block diagram for a ZP-based MCM transceiver.

(previous) ν components. In other words, it is a procedure of

mirror and add/substract, so it has been renamed as MIAS

algorithm.

This procedure guarantees that the matrix Hequiv =
M · Hm is diagonalized by the DCT4e transform; moreover,

the eigenvalues dk can be computed as the Discrete Cosine

Transform Type-III even (DCT3e) of the zero-padded vector

of length N, [h0, h1, ..., hν , 0, ..., 0].
In summary, the MIAS procedure proposed in [2] corres–

ponds to our general formulation, for the particular case of

T =DCT4e, choosing the modification block given by matrix

M of Eq. (6) at the receiver.

3. ZP AND DIAGONALIZATION VIA DCT2 EVEN

We will now focus on the study of the ZP when using the

Discrete Cosine Transform Type-II even (DCT2e). Let us first

recall the definition of the DCT2e matrix C2e [8, 9]:

(C2e)k,j = 2 cos

(

k(2j + 1)π

2N

)

, 0 ≤ k, j ≤ N − 1.

Following the general formulation given in Section 2, the aim

of this Section is to modify the channel matrix H of Eq. (1)

into a new matrix Hequiv in order to render it diagonalizable

via DCT2e. It is known that C2e diagonalizes symmetric ma-

trices that can be decomposed into the sum of a Toeplitz ma-

trix and a Hankel one with related entries (see [8]).

With this in mind, let us explain how to achieve an equiv-

alent channel matrix Hequiv diagonalizable by C2e. First of

all, we must impose symmetry of the filter h, (h
−k = hk) so

as to get a symmetric matrix Hequiv . If the channel filter hch

is not symmetric, we introduce a prefilter w as in [3], so we

can assume h = hch ∗ w is symmetric (see Fig. 1).

The procedure is as follows: into each transmitted block,

2ν zeros are appended as prefix, and 2ν zeros as suffix.

Hence,

xzp = [0, ...0,xT , 0, ...0]T

is the (N + 4ν)× 1 zero-padded version of the original sym-

bol x of length N . This vector xzp is transformed by the

(N +2ν)× (N +4ν) matrix H of Eq.(1) to obtain the receiv-

ing data yzp of length N + 2ν.
It is easy to see that yzp = H·xzp+n = Hm·x+n, where

n is a term related to the noise and Hm is the (N + 2ν) ×
N matrix of Eq.(5); recall that its columns are the N central

columns of H. Now, let us split Hm as

Hm =
[

HT
1 HT

2 HT
c HT

4 HT
5

]T
,

where H1 contains the rows from 1 to ν, H2 from ν+1 to 2ν,

Hc from 2ν + 1 to N , H4 from N + 1 to N + ν, and finally

H5 the remaining ν last rows. Observe that all the above are

ν × N matrices, except for Hc, which is an (N − 2ν) × N
matrix. Next, Hequiv is built from Hm just folding its first

(or last) ν rows (through the permutation Jν) as in a mirror,

and adding them to the adjacent (or previous) ν rows:

Hequiv =





JνH1 + H2

Hc

H4 + JνH5





We call this procedure “mirror and add” (MIA). This matrix

Hequiv can be written as Hequiv = Z+K, with Z the Toeplitz

matrix

Z =
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






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and K the Hankel matrix:

K =




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Fig. 2. Mirror and add (MIA) block processing at the receiver.

Z and K are symmetric as result of the symmetry of the fil-

ter and are related as indicated in [8]; hence, Hequiv can be

diagonalized by means of the DCT2e.

To reconstruct the original symbol x from the receiving

data yzp, we split yzp and the noise n in the same way as

Hm:

yzp =
[

yT
1 yT

2 yT
c yT

4 yT
5

]T
.

where

yT
1 =

[

y
−ν · · · y

−1

]

, yT
2 =

[

y0 · · · yν−1

]

,

yT
c =

[

yν · · · yN−ν−1

]

,

yT
4 =

[

yN−ν · · · yN−1

]

,yT
5 =

[

yN · · · yN+ν−1

]

.

Then, the same transformations on the rows of yzp must be

performed to get the N × 1 receiving data:

y=





Jνy1 + y2

yc

y4 + Jνy5



 +M · n=





JνH1 + H2

Hc

H4 + JνH5



x + M · n

=





Jν Iν 0 0 0

0 0 IN−2ν 0 0

0 0 0 Iν Jν



Hm · x + M · n.

Notice that this modification y = M · yzp performs in the

following way: the first (and last) ν components of yzp are

symmetrized as in a mirror, and added to their adjacent ν
components. In other words, it is a mirror and add proce-

dure, so we will denote it as MIA.

To summarize, the whole transform is written as in Eq.(3):

y = Hequiv · x + M · n,

where the equivalent channel matrix can be expressed as

Hequiv = M · Hm, being

M =





Jν Iν 0 0 0

0 0 IN−2ν 0 0

0 0 0 Iν Jν



 .

and Hequiv can be perfectly diagonalized via the DCT2e,

Hequiv = C−1
2e · D · C2e. (7)

Notice that the MIA block processing, performed by M, is

required at the receiver before the DCT2e block transform

(see Fig. 2).

3.1. FEQ coefficients

Now, we obtain the coefficients di (i ≤ 0 ≤ N − 1) to effi-

ciently equalize the frequency-selective transmission channel

under the zero-forcing criterion. Being di the entries of D in

(7), it is shown (see [5, 8]) that these diagonal entries can be

obtained as the first N components of

d = DCT1e(hr
ZP), (8)

where DCT1e stands for Discrete Cosine Transform Type-I

even, and hr
ZP is the (N + 1)−length vector defined as

hr
ZP = [h0, · · · , hν , 0, · · · , 0].

The result in (8) can also be expressed by means of the DCT2e

of the first column of Hequiv , which is

hequiv =
[

h0 + h1 h1 + h2 · · · hν−1 + hν hν 0 · · · 0
]T

.

One gets

di =
(C2ehequiv)

i+1

(C2e)i+1,1

, i = 0, . . . , N − 1. (9)

Summarizing, the coefficients of the FEQ can be com-

puted using the DCT1e as in (8) or using the DCT2e as in (9).

In this last case, all the transforms are carried out by means

of the DCT2e, which makes the transceiver implementation

easier.

4. CONCLUSIONS

In this work, we have presented a general formulation for the

use of ZP with any Discrete Transform in multicarrier com-

munications. Moreover, we have derived conditions for the

application of ZP with the Discrete Cosine Transform Type-II

even. The channel matrix has been modified in order to be di-

agonalized by the DCT2e transform. Matrix formulation has

been used to meet the conditions that allowed perfect recon-

struction of the original symbol at the receiver. The technique

consists in using zero padding and including a mirror and add

(MIA) block processing at the receiver. Furthermore, the val-

ues of the coefficients for the one-tap per subcarrier equalizer

have also been provided by means of a DCT transform.
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