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ABSTRACT

Automatic speech recognition (ASR) for wideband (WB) telephone

speech services must cope with a lack of matching speech databases

for acoustic model training. This paper investigates the impact of

mixing insufficient WB and additional narrowband (NB) speech

training data. It turns out that decimation and interpolation tech-

niques, reducing the bandwidth mismatch between the NB speech

material in training and the WB speech data to be recognized, do not

succeed in outperforming the pure NB ASR baseline. However, true

WB ASR training supported by artificial bandwidth extension (ABE)

reveals a performance gain. A new ABE approach that makes use of

robust dynamic features and a Viterbi path decoder exploiting pho-

netic a priori knowledge proves to be superior. It yields a reduction

of 1.9 % word error rate relative to the NB ASR baseline and 9.3 %
relative to a WB ASR experiment trained on only a limited amount

of WB speech data.

Index Terms— bandwidth extension, speech recognition

1. INTRODUCTION

Due to the use of hidden Markov models (HMMs), the increase of

computing power, and the availability of speech databases, more and

more demanding tasks for automatic speech recognition (ASR) have

been tackled within the past decades [1]. Particularly the rising quan-

tity of training data was found to be essential [2]. However, ASR

performance strongly depends on the acoustic speech bandwidth.

Empirical results in [1] show a relative word error rate (WER) re-

duction of 20 % by doubling the sampling rate from 8 to 16 kHz.

Accordingly, dictation and other large-vocabulary applications prin-

cipally use a sampling rate of at least 16 kHz, especially in noisy

environments. In the context of ETSI Aurora standardization for

noise-robust distributed speech recognition [3], [4] reports a rela-

tive ASR performance gain of 14 % averaged over a weak, medium,

and high recording mismatch between training and test conditions,

when recognizing noisy speech sampled at 16 instead of 8 kHz. In

a similar investigation using the Spanish SpeechDat-Car corpus, an

average relative improvement of 16 % is obtained in [5].

As most telephone calls are still narrowband (NB) providing a

speech bandwidth < 4 kHz, telephone-based interactive voice re-

sponse (IVR) systems are used to operate at 8 kHz sampling rate.

However, upcoming speech services now offer a wideband (WB)

frequency range of 0.05 . . . 7 kHz [6, 7]. The influence of a conven-

tional telephony network on phoneme recognition performance was

evaluated in [8, 9] using the N-TIMIT corpus [10]. The phoneme
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error rate (PER) was found to be degraded by 24 % and 33 %, re-

spectively, in relation to direct WB speech. In [11], we obtained a

similar result of 23 % relative PER degradation in a NB mobile net-

work derivative of the TIMIT corpus. Additionally, we investigated

the impact of a WB mobile network using the WTIMIT corpus [12].

It revealed an increase of 19 % PER rel. to direct WB speech and

a reduction of 3 % PER rel. to the NB mobile network. However,

such telephony network effects still remain to be validated on large-

vocabulary instead of limited phoneme recognition tasks, particu-

larly regarding telephone-based IVR systems in practice.

Since WB telephone speech databases are rarely available,

WB telephony ASR systems must cope with a limited amount of

matched training data. Some approaches make use of available NB

speech material by compensating for the bandwidth mismatch via

recognizer-specific solutions. On the one hand, [13] employs a WB-

to-NB feature transform via maximum likelihood linear regression

(MLLR) and [14] a modified Viterbi search driven by missing fil-

terbank components. On the other hand, bandwidth extension tech-

niques in the feature or acoustic model domain are given in [15, 16].

To be independent from the recognizer, [17] evaluates an artificial

bandwidth extension (ABE) of speech on a SPEECON Car City sub-

set, but without making use of matched data for WB acoustic model

training. This paper investigates an ASR system based on [18] taking

into account a limited amount of WB and more available NB speech

training data from the German Verbmobil corpus [19]. Different

strategies re-using the NB speech material are presented to improve

the ASR performance. A new ABE approach further developed from

[20] integrating robust dynamic features and a phonetically-driven

optimal state sequence decoder turns out to be superior.

This paper is structured as follows: Sec. 2 proposes several ABE

versions to extend NB speech training data. Sec. 3 introduces the

ASR system used for the experiments defined in Sec. 4. After having

discussed the results in Sec. 5, Sec. 6 draws the conclusions.

2. ABE VERSIONS

The employed ABE algorithm is based on the statistical framework

exploiting phonetic a priori knowledge introduced in [20, Sec. 3]

and has been further modified to optimize performance particularly

on critical fricatives /s,z/. As depicted in Fig. 1, it is divided into a

main ABE processing path at the bottom, an ABE estimation part in

the middle, and an access to pre-trained ABE parameters at the top.

The NB input speech samples sNB(n
′) with index n′ at 8 kHz

sampling rate are subject to interpolation of factor two, linear pre-

diction (LP) analysis filtering to remove the shape of the vocal tract,

spectral folding to fill the upper frequency band, and LP synthesis

filtering to form the vocal tract yielding the estimated WB output

speech samples ŝWB(n) with index n at 16 kHz sampling rate.
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Fig. 1. ABE algorithm exploiting phonetic a priori knowledge1.

To estimate the required WB LP filter coefficients âWB,ℓ mod-

eling the (inverse) vocal tract in frame ℓ=
⌊

n′

/80
⌋

= ⌊n/160⌋, a 15-

dimensional static feature vector xℓ is extracted from sNB(n
′). In

contrast to [20], it is augmented with first and second order dynamic

feature vectors x
′

ℓ and x
′′

ℓ , respectively, that are derived via robust

regression formulas spending five frames lookahead [21, Sec. 5.9]

x
′

ℓ =
1

28

3
∑

λ=1

λ(xℓ+λ−xℓ−λ), x
′′

ℓ =
1

10

2
∑

λ=1

λ(x′

ℓ+λ−x
′

ℓ−λ). (1)

The combined feature vector is transformed via a linear discrimi-

nant analysis (LDA) matrix into a 10-dimensional feature vector xℓ

serving as input of a first-order HMM. Following [20, Sec. 4.1.2],

the HMM states sℓ = i are specified by N = 24 codebook entries

i = 1, ..., N representing upper-band spectral envelopes. They are

trained on two phoneme classes: The first one (i = 1, ..., 16) rep-

resents all phonemes except for /s,z/, whereas the second one (i =
17, ..., N ) is dedicated to /s,z/ only. This assignment is defined dur-

ing ABE training by a mapping function f(sℓ= i)=ϕℓ that uniquely

relates HMM states to phoneme class labels ϕℓ. In offline ABE ap-

plications, such phonetic a priori knowledge is or can be made avail-

able, e.g., by manual phonetic transcription or forced Viterbi align-

ment. As further development from [20], a forward-backward algo-

rithm (FBA) is employed for optimal state decoding. To access ϕℓ,

the forward and backward recursions (2)-(3) [22, Sec. 6.4.1] need

to be reformulated taking into account the Gaussian mixture model

(GMM)-based observation likelihood bi(xℓ, ϕℓ)=p(xℓ, ϕℓ|sℓ= i)
as well as the state transition probability aj,i=P(sℓ= i|sℓ−1=j)
and the initial state probability πi=P(s1= i):

αℓ(i) = bi(xℓ, ϕℓ)

N
∑

j=1

aj,iαℓ−1(j), α1(i) = πibi(x1, ϕ1), (2)

βℓ(i) =
N
∑

j=1

bj(xℓ+1, ϕℓ+1)ai,jβℓ+1(j), βL(i) = 1. (3)

A posteriori probabilities γ
F(B)A
ℓ are either computed by the complete

FBA requiring all frames L (4) or just a forward algorithm (FA) (5):

γFBA
ℓ (i) = P(sℓ= i|x

L
1 , ϕ

L
1 ) =

αℓ(i)βℓ(i)
∑N

ν=1
αℓ(ν)βℓ(ν)

, (4)

γFA
ℓ (i) = P(sℓ= i|x

ℓ
1, ϕ

ℓ
1) =

αℓ(i)
∑N

ν=1
αℓ(ν)

. (5)

As an alternative to the FBA, a Viterbi path estimator is also em-

ployed [22, Sec. 6.4.2] by computing first a score δℓ(i) and a back-

tracking pointer ψℓ(i) over the entire utterance for all states i:

1Note that single/double lines denote a sample-/frame-wise processing.

δℓ(i) = max
j

[δℓ−1(j)aj,i]bi(xℓ, ϕℓ), δ1(i) = πibi(x1, ϕ1), (6)

ψℓ(i) = argmax
j

[δℓ−1(j)aj,i]. (7)

Backtracking is finally applied to decode the optimal state sequence

s∗ℓ = ψℓ+1(s
∗

ℓ+1), s
∗

L = argmax
i

[δL(i)]. (8)

The observation likelihood bi(xℓ, ϕℓ) = bi(xℓ) ·P(ϕℓ|sℓ = i) can

be split into a likelihood term bi(xℓ) that depends on the feature

observation only and P(ϕℓ|sℓ= i) denoting the elements of a 2×N -

dimensional phoneme class probability matrix defined as

P(ϕℓ|sℓ= i) =

{

1−ǫ, if f(sℓ= i)=ϕℓ

ǫ, else
with 0 < ǫ ≤

1

2
, (9)

which fulfills the normalization constraint
∑

ϕP(ϕℓ|sℓ = i) = 1.

After HMM state decoding, the upper-band spectral envelope is esti-

mated using the codebook entries and assembled with the calculated

NB spectrum to linearly predict the WB LP filter coefficients âWB,ℓ.

Please note that among the following ABE versions (a) - (e) used

for the ASR experiments in Sec. 4.3, phonetic a priori knowledge is

exclusively exploited in version (d) by choosing ǫ 6= 1

2
:

(a) ABE version using robust dynamic features (1) and the FA (2),

(5) without exploiting phonetic information (i.e., ǫ= 1

2
),

(b) version (a), but using the complete FBA (2)-(4),

(c) version (a), but using the Viterbi path decoder (6)-(8),

(d) version (c), but exploiting phonetic information with ǫ= 1

6
,

(e) cheat version with the original upper frequency band>4 kHz.

3. ASR SYSTEM

Our framework for acoustic model training and recognition relies

on the RWTH Aachen University open source speech recognition

toolkit [18]. The ASR components relevant for the experiments de-

scribed in Sec. 4.3 are briefly reviewed in the following.

3.1. Signal Processing Front End

The acoustic front end uses a Hamming window of 25 ms length

and 10 ms frame shift to extract Mel-frequency cepstral coefficient

(MFCC) features from the speech signal [23]. The MFCCs are sub-

ject to utterance-based cepstral mean normalization. For 16 kHz-

sampled speech signals 16 MFCCs are computed, whereas the num-

ber of MFCCs is reduced to 12 for speech signals sampled at 8 kHz.

High-frequency components of 8 kHz-sampled speech signals are

slightly accentuated by applying a first order finite impulse response

pre-emphasis filter y(n) = x(n)− 0.97 ·x(n− 1) prior to the fil-

ter bank, with x(n) and y(n) being the input and output samples of

index n, respectively. Temporal dynamics are captured by concate-

nating nine consecutive feature vectors centered around the current

frame. An LDA transformation is finally applied to reduce the di-

mension to 45.

3.2. Acoustic Model Training

Acoustic model training largely follows the recipes outlined in [18].

Linear segmentation of the signal (also known as flat start) is applied

for the initialization of context independent, single-state HMMs.

Two cycles of decision tree training and LDA are used for the cre-

ation of a triphone HMM inventory in the plain MFCC feature space.

The HMM state emission probabilities are modeled by GMMs with



a globally pooled, diagonal covariance matrix. The well-known

expectation maximization algorithm is used to iteratively train the

GMM parameters. The acoustic resolution of the model is increased

by a splitting step that creates small perturbations of the mean vec-

tors and is typically performed after 3 to 6 training iterations. The

HMM state transition probabilities are fixed depending on the type

of the transition (i.e., loop, forward, or skip).

3.3. Recognition System

Acoustic models are used with a variant of the speech recognizer,

which employs stochastic n-gram language models and a pronunci-

ation lexicon organized as a prefix tree in a time-synchronous beam

search algorithm [24]. Both acoustic and language models have been

trained on a subset of the German Verbmobil corpus (see Sec. 4.2 for

details), whereas the recognition lexicon has been created on the en-

tire corpus. After some preliminary experiments for parametrization

purposes not reported in detail here, the weighting exponent of the

language model term has been decided and was kept fixed. Other

key characteristics of the recognition system are as follows:

• 6000 classification and regression tree (CART)-tied, context-

dependent triphone HMMs,

• roughly 700,000 densities of dimension 45 with a globally

pooled, diagonal covariance matrix,

• a trigram language model with a total of 100,000 n-grams

trained via modified Kneser-Ney smoothing,

• a lexicon with about 11,400 words and 12,500 pronunciations.

4. EXPERIMENTAL SETUP

After having explained the preprocessing of simulated mobile tele-

phone speech conditions in Sec. 4.1, Sec. 4.2 defines several data

sets being required for the ASR experiments designed in Sec. 4.3.

4.1. Preprocessing of Speech Data

The single steps of preprocessing are carefully selected in order to

simulate realistic speech conditions for mobile telephony IVR sys-

tems. Please note that real telephone speech data being transmitted

over both NB and WB (mobile) telephony networks is hardly avail-

able until now1. Based on originally 16 kHz-sampled speech data,

the preprocessing creates NB, ABE and WB speech conditions.

The NB condition is obtained by bandpass filtering to a range

of about 0.2 . . . 3.6 kHz via the MSIN highpass filter, as specified

by the ITU-T in [25], and a flat lowpass filter slightly adapting

the FLAT1 filter in [25]. After decimation to a sampling rate of

8 kHz, which involves a lowpass filter for anti-aliasing and subse-

quent downsampling, the adaptive multirate narrowband (AMR-NB)

speech codec [26] is applied at bitrate 12.2 kbps. The resulting NB

condition serves as input for the ABE versions (a) - (e) in Sec. 2

to create five ABE conditions. In contrast, the WB condition is de-

rived from the original, 16 kHz-sampled speech data by transmitter-

sided P.341 filtering to a range of about 0.05 . . . 7.0 kHz accord-

ing to [25, 27] and transcoding via the adaptive multirate wideband

(AMR-WB) speech codec [28] at bitrate 12.65 kbps. The prepro-

cessed speech conditions are denoted as NB, ABEa-e and WB in the

following. Please note that some of the speech conditions used for

1The WTIMIT corpus [12] seems to be the first published WB mobile
telephone speech corpus, however, its data volume of about 5.5 hours is not
sufficient for the large-vocabulary ASR investigations presented here.
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Fig. 2. Processing scheme and data sets of the ASR experiments.

ID Train Set I Train Set II Test Set fs [kHz]

❣1 WB WB WB 16
❣2 NB NB NB 8
❣3 – WB WB 16
❣4 NB WB ↓2 WB ↓2 8
❣5 NB ↑2 WB WB 16

✞
✝

☎
✆6a -
✞
✝

☎
✆6e ABEa-e WB WB 16

Table 1. Assignment of preprocessed data sets to ASR experiments.

the ASR experiments in Sec. 4.3 furthermore require another dec-

imation (↓ 2) or interpolation (↑ 2). Corresponding to decimation,

interpolation involves upsampling and subsequent lowpass filtering.

4.2. Definition of Database Subsets

The speech data for our experiments originates from the German

part of the Verbmobil spontaneous speech corpus [19] that we con-

sider to be large enough for the purpose of this study. The speech

recording was done over close-talk and room microphones, as well

as a telephone. Since the preprocessing in Sec. 4.1 requires WB

speech, we only selected the close-talk and room microphone record-

ings sampled at 16 kHz. In total we used about 70 hours of German

WB speech data divided in four speaker-disjoint, gender- and age-

balanced subsets of different size.

The first two subsets Train Set I and Train Set II have portions

of about 42 hours (i.e., 60 %) and 14 hours (i.e., 20 %), respectively.

They contain speech data to train the HMMs in our experiments.

We chose different data sizes to take into account the fact that for

the acoustic model training of telephone-based IVR systems there

is usually available more NB than WB speech material. In this use

case, the smaller subset Train Set II provides WB speech, while the

larger Train Set I only includes NB speech. Those ASR experiments

in Sec. 4.3 taking into account ABE therefore extend Train Set I to

create additional speech data for WB acoustic model training. Based

on the given data volume of 70 hours, we assume that a ratio of 3:1
between NB and WB HMM training speech data is a good show case

to demonstrate realistic effects of imbalanced data sets in practice.

The two remaining subsets both have portions of 7 hours (i.e., 10 %
each). One of these subsets, denoted by Test Set, is used for ASR

evaluation, while the other one is dedicated to ABE training.

4.3. ASR Experiments

Based on the preprocessed speech conditions in Sec. 4.1 and the

database subsets defined in Sec. 4.2, we designed ASR experiments

of practical relevance. Fig. 2 depicts a generic block diagram of the

ASR processing scheme. The subsets Train Set I and Train Set II



ID % WER
% WER relative to

❣1 ❣2 ❣3 ❣4 , ❣5
❣1 36.83 ±0.0 −6.9 −14.0 −7.8
❣2 39.58 +7.5 ±0.0 −7.6 −0.9
❣3 42.83 +16.3 +8.2 ±0.0 +7.2
❣4 39.95 +8.5 +0.9 −6.7 ±0.0
❣5 39.95 +8.5 +0.9 −6.7 ±0.0

✞
✝

☎
✆6a 39.30 +6.7 −0.7 −8.2 −1.6

✞
✝

☎
✆6b 39.25 +6.6 −0.8 −8.4 −1.8

✞
✝

☎
✆6c 39.07 +6.1 −1.3 −8.8 −2.2

✞
✝

☎
✆6d 38.83 +5.4 −1.9 −9.3 −2.8

✞
✝

☎
✆6e 38.05 +3.3 −3.9 −11.2 −4.8

Table 2. Results of the ASR experiments in Table 1.

are both devoted to the HMM training. They can either be mixed,

which means that they are used in combination, or one of them is

discarded. After having trained the acoustic models, the ASR eval-

uation takes place on the subset Test Set. The evaluation results are

reported in terms of % WER.

Tab. 1 assigns the preprocessed database subsets to consecu-

tively numbered ASR experiments. The sampling rate fs indicates

that the acoustic front end either operates on 16 kHz- or 8 kHz-

sampled speech data. Experiments ❣1 and ❣2 serve as a reference

of the upper-bound ASR performance in the pure WB and NB case,

respectively. Due to the lack of WB speech data for HMM training

in practice, experiment ❣3 must do without the large Train Set I. The

remaining experiments are designed under three constraints:

• WB telephone speech is received to be recognized somehow,

• large Train Set I is only available as NB telephone speech,

• smaller Train Set II is available as WB telephone speech.

We consider these constraints as describing a situation of high practi-

cal relevance. Experiment ❣4 represents the simple case that incom-

ing WB telephone speech is recognized by a NB ASR system, there-

fore, all employed WB speech data is decimated prior to training and

recognition, respectively. In contrast, experiment ❣5 leaves the WB

speech training and test data untouched, but interpolates the available

NB speech material for training. In experiments
✞
✝

☎
✆6a -
✞
✝

☎
✆6e this inter-

polation is replaced by the ABE versions (a) - (e) defined in Sec. 2.

5. RESULTS AND DISCUSSION

The results of the performed ASR experiments are depicted in Tab. 2.

The absolute WERs vary roughly between 37 % and 43 % indicating

that the given ASR task is rather challenging2. Anyway, the goal

of this contribution is not to achieve the lowest absolute WER, but

to point out WER differences influenced by limitations of training

data and speech bandwidth. Hence, the following discussion mainly

focuses on relative WERs.

As expected, the WB baseline ❣1 outperforms the NB baseline
❣2 by 6.9 % WER relative, given full access to matched training

data. A limitation of the WB baseline to 14 out of 56 hours (i.e.,

25 %) of WB speech training data in ❣3 , however, degrades the WER

by 16.3 % relative to ❣1 and 8.2 % relative to ❣2 , respectively. It

turns out that the lack of training data causes a huge drop in WB

2Obviously, the absolute WER is much higher than, e.g., in [29, 30], how-
ever, the employed Verbmobil 1996 evaluation set with a total duration of
43 min is not directly comparable to our test set of 7 h length.

ASR performance. In order to solve this problem, the remaining

experiments make additionally use of available NB speech data for

training, in spite of the mismatch in speech bandwidth.

On the one hand, simple decimation prior to the recognition

helps to reduce the bandwidth mismatch in ❣4 , so that the recognizer

consistently operates at 8 kHz sampling rate. Indeed, the WER de-

creases by 6.7 % relative to ❣3 , however, it is still 0.9 % higher rel-

ative to the NB baseline ❣2 , also due to codec mismatch. On the

other hand, ❣5 does not require any decimation prior to the recog-

nition, since the NB speech training data has been interpolated to

16 kHz matching the sampling rate of the recognizer. Surprisingly,
❣5 achieves the same results as ❣4 , despite the bandwidth mismatch

between the interpolated training data and the WB speech data to be

recognized.

Instead of just interpolating training data as in ❣5 , the ABE ver-

sions (a) - (e) are applied in experiments
✞
✝

☎
✆6a -
✞
✝

☎
✆6e to reduce the band-

width mismatch. Obviously, all ABE versions are found to be ben-

eficial, leading to a WER lower than in experiments ❣2 to ❣5 . Ac-

cording to Sec. 2, ABE estimation based on the complete FBA in
✞
✝

☎
✆6b turns out to perform somewhat better than just using the FA in

✞
✝

☎
✆6a . For the first time, the NB baseline ❣2 is slightly improved by

0.7− 0.8 % WER relative. A further improvement is achieved by

means of the Viterbi path decoder in
✞
✝

☎
✆6c . It reveals a WER reduction

of 1.3 % relative to the NB baseline ❣2 . By additionally exploiting

phonetic information for Viterbi path estimation in
✞
✝

☎
✆6d , the WER is

even reduced in relation to ❣2 by 1.9 %. Please note that the cheat

experiment
✞
✝

☎
✆6e demonstrates the upper-bound ASR performance for

ABE by reconstructing the original upper frequency band >4 kHz.

Due to the degradation of the lower frequency band by means of a

telephone bandpass filter and an AMR-NB speech codec according

to Sec. 4.1,
✞
✝

☎
✆6e still exceeds the WER of the WB baseline ❣1 by

3.3 % relative. However, the NB baseline ❣2 is outperformed by

3.9 % WER relative. Assuming that the ASR performance for ABE

ranges from a simple interpolation in ❣5 to a perfect reconstruction

of the original upper frequency band in
✞
✝

☎
✆6e , the potentially achiev-

able relative WER gap is 4.8 %. The best ABE version (d) already

bridges more than half of this gap by reducing the WER relative

to ❣5 by 2.8 %. It furthermore reveals a significant WER improve-

ment of 9.3 % in relation to the WB baseline with limited amount of

matched training data in ❣3 , which is close to the relative WER gain

of the ABE upper-bound performance
✞
✝

☎
✆6e resulting in 11.2 %.

6. CONCLUSIONS

Telephone-based interactive voice response systems supporting

wideband (WB) speech services severely suffer from the lack of

WB telephone speech databases for acoustic model training. This

paper investigates potential automatic speech recognition (ASR) de-

signs re-using unmatched training data, i.e., available NB telephone

speech material. Decimation of incoming WB telephone speech

prior to the recognition – reducing the bandwidth mismatch to the

additional narrowband (NB) speech training data – even leads to

a lower ASR performance than the pure NB baseline. Interpola-

tion of the NB speech training data for recognizing WB speech per-

forms comparably, in spite of the bandwidth mismatch. An improved

ASR performance is achieved by extending the available NB speech

training data via artificial bandwidth extension (ABE). The use of a

Viterbi path decoder exploiting phonetic information turns out to be

beneficial for ABE. It reveals a substantial word error rate improve-

ment of 1.9 % relative to the NB baseline (more than halfway toward

an ABE performance upper bound), and even of 9.3 % relative to the

WB baseline with limited amount of matched training data.
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