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ABSTRACT 

 

We propose an unbiased recursive-least-squares(RLS)-type 

algorithm for errors-in-variables system identification when 

the input noise is colored and correlated with the output 

noise. To derive the proposed algorithm, which we call 

unbiased RLS (URLS), we formulate an exponentially-

weighted least-squares problem that yields an unbiased 

estimate. Then, we solve the associated normal equations 

utilizing the dichotomous coordinate-descent iterations. 

Simulation results show that the estimation performance of 

the proposed URLS algorithm is similar to that of a 

previously proposed bias-compensated RLS (BCRLS) 

algorithm. However, the URLS algorithm has appreciably 

lower computational complexity as well as improved 

numerical stability compared with the BCRLS algorithm. 

 

Index Terms—Adaptive estimation, dichotomous 

coordinate-descent algorithm, errors-in-variables modeling, 

recursive least-squares, system identification. 

 

1. INTRODUCTION 

 

Errors-in-variables (EIV) models represent linear systems in 

which both input and output data are corrupted with noise 

[1]-[4]. Three popular estimation methods that are widely 

used to identify parameters of the EIV models are the 

instrumental variables (IV) [5]-[7], total least-squares (TLS) 

[8]-[10], and least-squares (LS) with bias compensation 

[11]-[14]. 

The IV estimation techniques are computationally simple 

but typically have poor performance compared with the 

other techniques [15]-[17]. The TLS approach estimates the 

parameters of an EIV model by fitting the input data to the 

output data with minimum perturbation. The TLS estimate 

is unbiased only when the noises on input and output are 

zero-mean i.i.d. and mutually uncorrelated [9]. 

The LS methods are biased in the presence of the input 

noise. However, the bias can be calculated and compensated 

for by subtracting it from the biased LS estimate. Based on 

this concept, several bias-compensated LS (BCLS) 

algorithms, e.g., [18]-[20], and bias-compensated recursive 

LS (BCRLS) algorithms, e.g., [21], [22], have been devised. 

The BCLS and BCRLS algorithms proposed in [20] and 

[22], respectively, have specifically been tailored for the 

case where there is correlation among the entries of the 

input noise vector (colored input noise) as well as between 

the input noise vector and the output noise. This colored-

and-correlated-noise case occurs in several signal processing 

applications related to engineering or econometrics. One 

example is the identification of the coefficients of an 

autoregressive predictive model in the context of speech 

signal analysis where an additive colored noise may 

contaminate the input data [22]. 

The BCRLS algorithm of [22], which we will simply 

refer to as the BCRLS algorithm, at each iteration, computes 

a recursive LS (RLS) estimate of the sought-after parameter 

vector along with an estimate of the noise-induced bias. It 

then subtracts the calculated bias from the RLS estimate to 

yield a bias-eliminated RLS estimate. The BCRLS 

algorithm calculates the estimation bias using the prior 

knowledge of the covariance matrix of the input noise 

vector and the cross-correlation vector between the input 

noise vector and the output noise. 

In this paper, we propose an algorithm, termed unbiased 

RLS (URLS), for estimating the parameters of an EIV 

model when the input noise is colored and correlated with 

the output noise. Unlike the bias-compensation-based 

algorithms, the URLS algorithm does not explicitly 

eliminate the estimation bias by subtracting an evaluation of 

the bias from a biased estimate. Instead, it incorporates the 

knowledge of the input noise covariance matrix and the 

input-output noise cross-correlation vector into the recursive 

estimation process to produce an unbiased estimate. Similar 

to [22], we assume that the required noise statistical 

quantities can be estimated or are known a priori. 

To derive the URLS algorithm, we define an 

exponentially-weighted LS optimization problem whose 

solution is an unbiased estimate. We solve the system of 

linear equations (SLE) associated with the normal equations 

of the defined problem utilizing the dichotomous 

coordinate-descent (DCD) iterations [23]. The DCD 

algorithm is a shift-and-add algorithm that solves an SLE 

with no multiplication operation. In this algorithm, the 

number of exercised iterations and the step-size resolution 

establish a trade-off between accuracy and complexity [24], 

[25]. 



Through simulations, we verify that the estimation 

performance of the URLS algorithm is very close to that of 

the BCRLS algorithm. However, the URLS algorithm is 

significantly less complex than the BCRLS algorithm in 

terms of the required arithmetic operations. The URLS 

algorithm is also immune to numerical instability caused by 

the buildup of round-off errors in finite-precision 

implementations, which can plague the BCRLS algorithm. 

 

2. ALGORITHM DERIVATION 

 

Consider a linear system described by 

     
    (1) 

where        is the column vector of the system 

parameters,     is the order of the system, superscript   

denotes matrix transposition, and     
    and      are 

the input vector and the output at time index    , 

respectively. Instead of    and   , we observe their noisy 

versions, i.e., 

  ̃        (2) 

and 

  ̃        (3) 

where     
    and      represent the corresponding 

input and output noises. 

We make the following assumptions regarding the noises 

and the input data: 

A1: The input noise vector,   , is i.i.d. with zero mean 

and covariance matrix of  ̂, i.e., 

 [  ]     and   [    
 ]   ̂ 

where   is the     zero vector. 

A2: The output noise,   , is i.i.d. with zero mean and 

variance of  , i.e., 

 [  ]     and   [  
 ]   . 

A3: The input and output noises are mutually correlated 

with a cross-correlation vector of  ̂, i.e., 

 [    ]   ̂. 

A4: The input noise is statistically independent of the 

noiseless input. 

We also define 
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where   is a forgetting factor that satisfies 

     . 

By discounting the input noise and its effect, an unbiased 

exponentially-weighted LS estimate of   at time instant  , 

denoted by     
   , can be found as 

         
 
 ‖ ̃   
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where ‖ ‖ denotes the Euclidean norm. The vector    can be 

considered as the weight vector of an adaptive filter and is the 

solution of the associated normal equations expressed as [26] 
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Using the above definitions together with 
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and 
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(4) can be written as 
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In view of A1-A4, which imply that the noises are 

stationary and correlation-ergodic, we have 
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where   is the     zero matrix and 
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Substituting (6)-(8) into (5) alongside defining 

          ̂ (9) 

 



TABLE I 

THE DCD ALGORITHM SOLVING         
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and 

          ̂ (10) 

gives 

        . (11) 

From the definitions of   ,   , and   , we have 

          ̃  ̃ 
 , 

          ̃  ̃ , 

and 

          . 

Using these equations together with (9) and (10), we obtain 

the following recursive update equations: 

          ̃  ̃ 
   ̂ 

and 

          ̃  ̃   ̂. 

In order to find   , we solve the SLE of (11) using the 

DCD iterations [24] given in Table I where   
 
 denotes the 

 th element of a vector    while   
   

 and   
( )

 are the 

(   )th entry and the  th column of the matrix   , 

respectively. Three design parameters, viz.,    ,    , 

and    , govern the accuracy and complexity of the DCD 

algorithm [23]. The algorithm renders maximum   iterative 

updates at each run while the entries of the solution vector, 

  , are represented as fixed-point words with   bits within 

an amplitude range of [    ]. 
We summarize the proposed unbiased recursive least-

squares (URLS) algorithm in Table II. 

 

3. COMPUTATIONAL COMPLEXITY 

 

Since    is symmetric, it is sufficient to update only its 

upper-triangular part. Moreover, if we select the forgetting 

factor as         where   is a positive integer, we can 

replace multiplications by   with additions and bit-shifts [24]. 

TABLE II 

THE URLS ALGORITHM 

initialize 

          

         

at iteration         

              ̃  ̃ 
   ̂ 

              ̃  ̃   ̂ 

    solve         to find    

 

TABLE III 

COMPUTATIONAL COMPLEXITY OF THE BCRLS AND URLS ALGORITHMS 

IN TERMS OF NUMBER OF REQUIRED ARITHMETIC OPERATIONS PER 

ITERATION 

       

BCRLS                  1 

URLS                   (      )         

 

In Table III, we present the number of required arithmetic 

operations per iteration by the BCRLS and URLS 

algorithms. The ratio of the number of multiplications 

required by the URLS algorithm at each iteration to that of 

the BCRLS algorithm for any value of   is bounded as 

    
          

      
      

Therefore, the URLS algorithm requires    to     fewer 

multiplications per iteration than the BCRLS algorithm. 

Furthermore, unlike the BCRLS algorithm, the URLS 

algorithm does not require any division operation that is 

usually expensive to implement in both hardware and 

software [27]. 

 

4. RELATION TO THE BCRLS ALGORITHM 

 

Assuming that the DCD algorithm is adequately accurate, 

we can consider the filter weight vector of the URLS 

algorithm to be the exact solution of the LSE of (11), which 

can be rearranged as 

           ̂      ̂. 

Multiplying both sides of this equation by   
   gives 

      
         

  ( ̂    ̂). (12) 

Comparing (12) with the update equation of the BCRLS 

algorithm, i.e., 

     
         

  ( ̂      ̂), 

shows that the update equations of the URLS and BCRLS 

algorithms are almost identical. The only difference is 

whether the current or previous filter weight vector is used 

in the bias correction term. Accordingly, it is expected that 

the two algorithms exhibit comparable estimation 

performance. Nonetheless, this seemingly minor 

dissimilarity in the update terms makes a significant 
 



 

Fig. 1.  Learning curves of the BCRLS algorithm and the URLS algorithm 

with different values of  . 

 

difference in terms of computational complexity and 

numerical stability by enabling effective utilization of the 

DCD iterations in the URLS algorithm. 

 

5. SIMULATIONS 

 

Consider an errors-in-variables system identification 

problem where the system parameter vector has     

arbitrary entries. The noiseless input vector,   , is zero-

mean i.i.d. multivariate Gaussian with covariance matrix 

        {  }  
  

where     
    is a randomly-generated unitary matrix 

and the elements of     
    are drawn from a uniform 

distribution in the interval [     ]. The augmented noise 

vector, [  
    ]

 , is also zero-mean i.i.d. multivariate 

Gaussian with covariance matrix 

[
 ̂  ̂

 ̂  
]             {    }    

 . 

We set     (         ),     ,    , and     . 

In Fig. 1, we compare the estimation performance of the 

BCRLS algorithm and the URLS algorithm with different 

values of  . The performance measure is the mean-square 

deviation (MSD), i.e.,  [‖    ‖
 ], which is evaluated by 

taking the ensemble-average over     independent runs. 

Fig. 1 shows that the larger   is, the closer the performance 

of the URLS algorithm to that of the BCRLS algorithm 

becomes. 

In Fig. 2, we plot the time-evolution of the MSD of the 

BCRLS algorithm and the URLS algorithm with      for 

    iterations. All the variables are represented in double-

precision floating-point format. Fig. 2 shows that, even with 

such high-precision arithmetic, the BCRLS algorithm 

diverges after about      iterations. However, the URLS 
 

 

 
Fig. 2.  Learning curves of the BCRLS algorithm and the URLS algorithm 

with      for     iterations. 

 

algorithm maintains its numerical stability throughout the 

simulation. In addition, we carried out several numerical 

experiments in different scenarios for very large numbers of 

iterations, e.g.,    . In agreement with the findings of [24] 

pertaining to the numerical stability of the DCD-RLS 

algorithm, during the experiments, we did not observe any 

numerical instability in the URLS algorithm. 

In the scenario simulated here, i.e., for    , the BCRLS 

algorithm requires     multiplications per iteration while 

the URLS algorithm requires     of this amount, which is 

only    multiplications per iteration. 
 

 

6. CONCLUSION 

 

We proposed an unbiased recursive least-squares (URLS) 

algorithm for identifying the parameter vector of errors-in-

variables models when the input noise is colored and 

correlated with the output noise. To derive the URLS 

algorithm, we employed the dichotomous coordinate-

descent (DCD) iterations to solve the normal equations 

associated with a least-squares problem that is specifically 

formulated to yield an unbiased estimate. Simulation results 

confirmed that the URLS algorithm performs as well as a 

previously proposed bias-compensated recursive least-

squares (BCRLS) algorithm. However, the URLS algorithm 

executes considerably fewer computations than the BCRLS 

algorithm. Moreover, unlike the BCRLS algorithm, the 

URLS algorithm is virtually immune to numerical instability 

incurred by the accumulation of round-off errors in finite-

precision implementations. 

 

REFERENCES 

 
[1] M. Deistler, “Linear dynamic errors-in-variables models,” J. 

Appl. Probability, vol. 23A, pp. 23–39, 1986. 

0 200 400 600 800 1000 1200

-20

-15

-10

-5

0

iteration number

m
ea

n
-s

q
u
a
re

d
ev

ia
ti
o
n

(d
B
)

 

 

URLS with N = 12
URLS with N = 16
URLS with N = 20
URLS with N = 24
BCRLS

0 2 4 6 8 10

-20

-15

-10

-5

0

iteration number (#10,000)

m
ea

n
-s

q
u
a
re

d
ev

ia
ti
o
n

(d
B
)

 

 

URLS with N = 24
BCRLS



[2] W. A. Fuller, Measurement error models, New York: Wiley, 
1987. 

[3] S. Van Huffel and P. Lemmerling, Eds., Total Least Squares 

Techniques and Errors-in-Variables Modelling: Analysis, 

Algorithms and Applications, Dordrecht, The Netherlands: 
Kluwer Academic Publishers, 2002. 

[4] T. Söderström, “Errors-in-variables methods in system 
identification,” Automatica, vol. 43, pp. 939-958, 2007. 

[5] A. Wald, “The fitting of straight lines if both variables are 

subject to error,” Ann. Math. Stat., vol. 11, pp. 284-300, Sep. 
1940. 

[6] J. D. Sargan, “The estimation of economic relationships using 

instrumental variables,” Econometrica, vol. 26, pp. 393-415, 

Jul. 1958. 

[7] J. Pearl, Causality: Models, Reasoning, and Inference, 
Cambridge Univ. Press, 2000. 

[8] G. H. Golub and C. F. Van Loan, “An analysis of the total 

least squares problem,” SIAM J. Numerical Anal., vol. 17, no. 
6, pp. 883–893, Dec. 1980. 

[9] S. Van Huffel and J. Vandewalle, The Total Least Squares 

Problem: Computational Aspects and Analysis, Philadelphia, 

PA: SIAM, 1991. 

[10] I. Markovsky and S. Van Huffel, “Overview of total least-

squares methods,” Signal Process., vol. 87, pp. 2283-2302, 
2007. 

[11] P. N. James, P. Souter, and D. C. Dixon, “Suboptimal 

estimation of the parameters of discrete systems in the 

presence of correlated noise,” Electron. Lett., vol. 8, pp. 411-

412, 1972. 

[12] S. Sagara and K. Wada, “On-line modified least-squares 

parameter estimation on linear discrete dynamic systems,” 
Int. J. Control, vol. 25, no. 3, pp. 329-343, 1977. 

[13] P. Stoica and T. Söderström, “Bias correction in least-squares 
identification,” Int. J. Control, vol. 35, pp. 449-457, 1982. 

[14] K. Wada, M. Eguchi, and S. Sagara, “Estimation of pulse 

transfer function via bias-compensated least-squares method 

in the presence of input and output noise,” Syst. Sci., vol. 16, 
no. 3, pp. 57–70, 1990. 

[15] T. Söderström and P. Stoica, System Identification, 
Cambridge, U.K.: Prentice Hall, 1989. 

[16] S. Van Huffel and J. Vandewalle, “Comparison of total least 

squares and instrumental variable methods for parameter 

estimation of transfer function models,” Int. J. Control, vol. 

50, pp. 1039–1056, 1989. 

[17] T. Söderström and K. Mahata, “On instrumental variable and 

total least squares approaches for identification of noisy 
systems,” Int. J. Control, vol. 75, pp. 381–389, 2002. 

[18] T. Söderström, “Extending the Frisch scheme for errors-in-

variables identification to correlated output noise,” Int. J. 
Adaptive Control Signal Process., vol. 22, pp. 55-73, 2008. 

[19] R. Diversi, “A bias-compensated identification approach for 

noisy FIR models,” IEEE Signal Process. Lett., vol. 15, pp. 
325-328, 2008. 

[20] R. Diversi, “Bias-eliminating least-squares identification of 

errors-in-variables models with mutually correlated noise,” 

Int. J. Adapt. Control Signal Process., 2012; DOI: 

10.1002/acs.2365. 

[21] K. Ikeda, Y. Mogami, and T. Shimomura, “Bias 

compensation of recursive least squares estimate in closed 

loop environment,” SICE J. Control, Measurement, System 
Integration, vol. 1, no. 5, pp. 400–405, Sep. 2008. 

[22] A. Bertrand, M. Moonen, and A. H. Sayed, “Diffusion bias-

compensated RLS estimation over adaptive networks,” IEEE 

Trans. Signal Process., vol. 59, pp. 5212–5224, Nov. 2011. 

[23] Y. V. Zakharov and T. C. Tozer, “Multiplication-free 

iterative algorithm for LS problem,” Electron. Lett., vol. 40, 
no. 9, pp. 567–569, Apr. 2004. 

[24] Y. Zakharov, G. White, and J. Liu, “Low complexity RLS 

algorithms using dichotomous coordinate descent iterations,” 

IEEE Trans. Signal Process., vol. 56, pp. 3150–3161, Jul. 

2008. 

[25] J. Liu, Y. V. Zakharov, and B. Weaver, “Architecture and 

FPGA design of dichotomous coordinate descent 

algorithms,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 
56, pp. 2425–2438, Nov. 2009. 

[26] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd 
ed., Baltimore, MD: Johns Hopkins Univ. Press, 1996. 

[27] K. Doğançay, “Complexity considerations for transform-

domain adaptive filters,” Signal Process., vol. 83, no. 6, pp. 
1177–1192, Jun. 2003. 


