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Abstract—By use of window functions, time-frequency analysis
tools like Short Time Fourier Transform overcome a shortcoming
of the Fourier Transform and enable us to study the time-
frequency characteristics of signals which exhibit transient os-
cillatory behavior. Since the resulting representations depend on
the choice of the window functions, it is important to know how
they influence the analyses. One crucial question on a window
function is how accurate it permits us to analyze the signals in
the time and frequency domains. In the continuous domain (for
functions defined on the real line), the limit on the accuracy
is well-established by the Heisenberg’s uncertainty principle
when the time-frequency spread is measured in terms of the
variance measures. However, for the finite discrete signals (where
we consider the Discrete Fourier Transform), the uncertainty
relation is not as well understood. Our work fills in some of the
gap in the understanding and states uncertainty relation for a
subclass of finite discrete signals. Interestingly, the result is a close
parallel to that of the continuous domain: the time-frequency
spread measure is, in some sense, natural generalization of the
variance measure in the continuous domain, the lower bound
for the uncertainty is close to that of the continuous domain,
and the lower bound is achieved approximately by the ‘discrete
Gaussians’.

I. INTRODUCTION

Fourier Transform, due to the fact that it is a global
transform, is not well-suited for the analysis of signals that
exhibit transient behavior. This is a rather significant drawback
since such signals exist in abundance. One way to remedy
this shortcoming is the use of window functions: a window
function enables us to localize the function to some specific
interval of interest that we want to look at. This gives rise
to time-frequency analysis and makes it possible for us to
study the frequency structure of functions at varying points in
time. Just like Fourier analysis, time-frequency analysis is a
fundamental tool in science, especially in signal processing.

In this article, we define the Fourier Transform f̂ of a
complex-valued function f defined on the real line R via

f̂(ξ) :=

∫
R
f(t)e−2πiξt dt, ξ ∈ R. (1)

The Windowed Fourier Transform of f with a given window
function g : R→ C would then be defined as

Vg(τ, ξ) :=
∫
R
f(t)g(t− τ)e−2πiξt dt, τ, ξ ∈ R.

If g and ĝ are supported near the origin, one may interpret
that Vgf(τ, ξ) is the ‘ξ-frequency content of f at time τ ’.

Unfortunately, such an ideal interpretation cannot become
a reality; the well-known uncertainty principles expresse the

idea that there is a fundamental limit on how g and ĝ can
be simultaneously localized in the two domains. The most
famous formulation of the uncertainty principle is given by
the Heisenberg-Pauli-Weyl inequality (see, e.g., [1]):

Theorem 1: For f ∈ L2(R), define the variance of f by

vf := min
a∈R

1

‖f‖22

∫ ∞
−∞

(t− a)2|f(t)|2 dt. (2)

Then,
vfvf̂ ≥

1

16π2
.

Equality holds if and only if f is a multiple of ϕa,b, defined
by

ϕa,b(t) := e2πib(t−a)e−π(t−a)
2/c

for some c > 0.
We may define the mean of f by

µf := argmin
a∈R

1

‖f‖22

∫ ∞
−∞

(t− a)2|f(t)|2 dt.

Clearly, the smaller vf is, the more concentrated the function
f is around µf . In other words, vf is a measure of time-
spreading of f . Similarly, vf̂ is a frequency-spreading measure
of f . Thus, the Heisenberg-Pauli-Weyl inequality expresses the
intrinsic limit on how well an L2(R) function can be localized
on the time-frequency plane. Moreover, the theorem also tells
us what the minimizing functions are.

While the Heisenberg Uncertainty Principle gives us a clear
picture of what can be achieved for time-frequency localization
for the continuous functions defined on R, our discussion so
far is somewhat detached from reality; we can only consider
functions defined on finite intervals in real life. Furthermore,
in this day and age of computers, processing can be done
only when the signal can be stored in memory. Therefore, the
signals are discrete and finite.

A pertinent question is: what can be said about the un-
certainty for the time-frequency analysis when the Discrete
Fourier Transform is used? Is there any relation between the
uncertainties for the continuous and the discrete cases? To our
knowledge, surprisingly little is known for this problem, and
this is the area that we aim to contribute to with our work.

II. DISCRETE UNCERTAINTY RELATIONS: SOME RELATED
WORKS

In this section, we discuss some works in the literature
which may serve as an introduction to the problem that we
are interested in.
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A. Uncertainty for Continuous Functions Defined on the Cir-
cle

The Fourier series for periodic functions may be viewed
as something intermediate between the continuous Fourier
Transform for functions on the real line and the discrete
Fourier Transform for finite signals. It could be a good starting
point of our discussion on the uncertainty for discrete signals.

For a 2π-periodic function f , the Fourier coefficients for f
is defined by

f̂(k) :=
1

2π

∫ 2π

0

f(t)e−ikt dt, k ∈ Z.

Remarks on notations: For lightness, we will sacrifice
the precision and use the same notation f̂ to mean various
different Fourier Transforms whose meaning will become clear
depending on what f is. Such a convention extends to ‖ · ‖ as
well. We also point out that the definition of the continuous
Fourier Transform f̂ used in this subsection is defined without
the 2π-factor in (1).

The question we are interested in is how concentrated, or
conversely how spread, f and f̂ are. We note that even though
f̂ is a discrete sequence, there is no problem in defining the
variance of it; we need only to replace the integral in (2) with
an analogous sum. The mean µf̂ can be similarly defined. The
situation is different for f . The issue is that we cannot simply
compute

1

‖f‖22

∫ 2π

0

t|f(t)|2 dt

for the mean of f . Such a quantity fails to take the periodicity
into account.

A different way to characterize ‘the mean value’ had been
proposed (see [2]):

τ(f) :=
1

‖f‖22

∫ 2π

0

eit|f(t)|2 dt.

The periodicity is clearly reflected in τ(f). With that, one
defines ‘the variance’ of f as

1

‖f‖22

∫ 2π

0

|eit − τ(f)||f(t)|2 dt = 1− τ(f)2.

With these time-frequency spread measures, the uncertainty
relation for the continuous functions on the circle was shown
to be as follows: (

1− τ(f)2
)
vf̂ ≥

τ(f)2

4
. (3)

Note that unlike in the continuous setting, the quantity on the
right-hand side depends on the function f . Therefore, if we
were to use (1 − τ(f)2)vf̂ as the measure of uncertainty of
f , the equality in (3) does not immediately imply that f is
a minimizer of the uncertainty. A simple way to bypass this
issue is to define the time spread of f as

vf :=
1− τ(f)2

τ(f)2
.

A more precise description of the resulting uncertainty prin-
ciple is given as follows [3], [4]:

Theorem 2: For a function f ∈ AC2π with f ′ ∈ L2([0, 2π])
where f is not of the form ceikt for any c ∈ C, k ∈ Z, it holds
that

vfvf̂ >
1

4
.

The lower bound is not attained by any function, but is best
possible. Here, AC2π is the class of 2π-periodic absolutely
continuous functions.

One reservation towards this result is that the meaning of the
so-called angular spread vf is not very intuitive. In addition,
the theorem does not give any guide on what functions may
have the uncertainty product close to the lower bound.

A result in [5] sheds some light on the second problem.
The authors used a process of periodization and dilation to
show that a sequence of functions achieve the uncertainty for
functions defined on the real line in the limit. They proved:

Theorem 3: For an admissible function f (defined on the
real line),

lim
a→∞

1

a2
vfa = vf , lim

a→∞
a2vf̂a = vf̂ ,

where
fa(t) :=

√
a
∑
k∈Z

f(a(t+ 2πk)).

Therefore,
lim
a→∞

vfavf̂a = vfvf̂ .

We remind the reader that the definitions of vfa and vf are
quite different.

Since the minimum of vfvf̂ is known to be 1/4 and is
achieved by (essentially) Gaussian functions, the theorem pro-
vides a way to build periodic functions that are asymptotically
optimal in the given measure of time-frequency spreads. We
will see that our result shares some similarity with this.

Another way to obtain periodic functions which nearly
achieve the uncertainty bound is by computing directly with
numerical optimization [6]. In this approach, Parhizkar et
al. fixed the angular spread at a prescribed level and then
searched for functions that minimize the frequency spread
with the given angular spread. They formulated the problem
as a quadratically constrained quadratic program and hence
enabled efficient computations of desired window functions.

For more results for uncertainties for functions on the circle
which include different spread measures, refer to [7]–[9].

B. Sparsity and Entropy

There are several works in the literature on the uncertainty
relation for finite discrete signals where the Discrete Fourier
Transform is considered; see, e.g., [10]–[16]. Most results
in these can be generically stated as φ(x) + φ(x̂) ≥ cs or
φ(x)φ(x̂) ≥ cp for some constants cs and cp where φ(x)
measures the spread of x. In [10]–[13], φ(x) is chosen to be
‖x‖0, i.e., the sparsity or the number of non-zero entries of x.
In [16], the entropy of x, S(x), is used for φ(x). For more on
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these and other topics regarding uncertainty principle, refer to
[17].

While these results are deep and important with much im-
pact, we note that ‖x‖0 and S(x) (and other similar measures)
do not reflect properly the underlying geometry. For example,
if x consists of two pulses, ‖x‖0 = 2 no matter where the
pulses are. However, in many contexts, we clearly regard x
is more localized/concentrated if the pulses are next to each
other.

Another potential drawback is that the minimizers of these
uncertainty measures tend to be the picket-fence signals (Dirac
comb). From the perspective of window signals, those are
intuitively regarded as poorly localized on the time-frequency
plane. These are the reasons why we insist on the definitions
in Section III-A.

Before closing the section, we mention the work [18]. In
this work, they consider two operators (which may not even be
self-adjoint) in a Hilbert space and derive related uncertainty
relations. Since their result is general, one can apply it in the
setting that we are interested in and obtain some uncertainty
relation. For appropriate choice of operators, one may obtain a
result that would be close to ours. While interesting, we think
this is not a simple task. We also point out that our result
links uncertainty relations in two different domains, which is
not addressed by [18].

III. CONNECTION BETWEEN DISCRETE AND CONTINUOUS
UNCERTAINTY RELATIONS

In this section, we present the main result of this paper.

A. Discretized Time-Frequency Spreads Measures

Let us fix a positive integer N and consider the space CN
of N -dimensional signals. For our purposes, we will regard a
vector x ∈ CN as defined on N uniformly spaced points

DN :=
{
− N

2
+ 1,−N

2
+ 1, . . . ,

N

2

}
/
√
N.

With this understanding, the Discrete Fourier Transform x̂ ∈
CN of x ∈ CN is defined by

x̂(k) :=
1√
N

∑
j∈DN

x(j)e−2πjk, k ∈ DN .

The inverse transform has the following form:

x(j) =
1√
N

∑
k∈DN

x̂(k)e2πjk, j ∈ DN .

Next, we consider a measure of spread of a vector x ∈ CN .
For this, we go back to (2) and adapt it to our setting. Viewing
|t− a| as the distance between t and a, it is natural to define
the variance vx of x ∈ CN by

vx := min
a∈IN

1

‖x‖22

∑
j∈DN

d(j, a)2|x(j)|2

where IN denotes interval (−
√
N,
√
N ]/2 and d(j, a) is the

distance between j and a. Now note that our definition of
Discrete Fourier Transform assumes that the signals in CN are

√
N -periodic. Taking this into account, we define the distance

between two points j and a by

d(j, a) := min
l∈
√
NZ
|j − a− l|.

Finally, we may define the mean µx of x to be the minimizing
value a ∈ IN of the right-hand side expression above for vx.
Note that vx̂ is identically defined.

B. No Uncertainty?

With our definition of uncertainty vxvx̂, there cannot be
any uncertainty principle in the conventional sense. Clearly,
for any x ∈ CN , we have vx ≤ N/4 and vx̂ ≤ N/4. On
the other hand, the vector x that is supported at the origin
satisfies vx = 0. Hence, vxvx̂ = 0. It appears that there is no
uncertainty at all and that we can do as well as we want!

Of course, such a claim is non-sense, and it runs counter
to our intuition that we could not have a signal localized
simultaneously in both domains as accurate as we wanted.
A closer look at the case vxvx̂ = 0 reveals why we came
to this conclusion. The signal x̂ is globally supported but vx̂
fails to express the badness in frequency localization since it is
always bounded above by N/4. In contrast, one would have
had vf̂ = ∞ in such cases. One way to resolve this issue
would be to re-define vx̂ (and vx) in a way so that vx̂ = ∞
in this kind of signals x. However, we will not take this route
since the argument in Section III-A shows that vx is a sensible
way to gauge the time spread of x. How can we formulate a
sensible uncertainty principle then?

C. Uncertainty for a Subclass of Discrete Signals

As seen in III-B, there are signals that we clearly want to
exclude from our consideration. Thus, it makes sense to restrict
our attention to a subclass of signals in CN in order to exclude
the cases where x or x̂ are ‘globally supported’.

Based on the similarity between the discrete and the contin-
uous Fourier Transforms, it is natural to suspect that discrete
finite samples of Gaussian functions might be optimal win-
dows for the Discrete Fourier Transform. While this appears
reasonable, it looks difficult to show its validity rigorously.
Moreover and perhaps obviously, taking discrete finite samples
of Gaussian functions would be a bad idea unless they happen
to be nearly zero outside the sampling interval. This leads us
to introduce ‘admissible functions’ for our discussion.

We say that f ∈ L2(R) is (N, ε)-localized if

|f(t)| ≤ ε

|t|2
, |t| ≥

√
N

2
, (4)

and that a signal x ∈ CN is admissible with constant ε if

x(j) = xf (j) := N−1/4
∑

l∈
√
NZ

f(j + l), j ∈ DN

for a function f with (N, ε)-localized functions f , f ′, f̂ , f̂ ′.
That is, admissible vectors in CN are obtained by uniformly
sampling

√
N -periodized localized functions in L2(R).

Our main result is the following:
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Theorem 4: Suppose that f ∈ L2(R) is localized in time-
frequency domain with constant ε. Then,√

vfvf̂ (1−
√
ε) ≤

√
vxvx̂ ≤

√
vfvf̂ (1 +

√
ε),

where x := xf . Thus, if x is an admissible signal, then

vxvx̂ ≥
(1−

√
ε)2

16π2
.

To give some idea of the proof, we ask first: Why do we
associate xf to f instead of sampling the function directly
without periodizing it? Upon some reflection, the periodization
seems to be natural given the well-known phenomenon of
folding (aliasing) associated with sampling approach. It is
the periodization that makes the two endpoints of DN to
be neighbors when the sampling is done. Another crucial
reason for us to introduce xf in that way is the observation
that x̂f = xf̂ , which is a standard consequence of Poisson
Summation Formula. Thanks to this identity, we need only to
show that vx and vx̂ are good approximations of vf and vf̂ ,
respectively. To show that vx and vf are close to each other,
we show that relevant moments of x and f are very close.
For this purpose, we apply the Poisson Summation Formula
and the Parseval’s identity. This is also where we use (N, ε)-
localizedness of f , f ′, f̂ , and f̂ ′. A detailed proof of Theorem
4 will be given in an up-coming work.

IV. DISCUSSION AND CONCLUSION

One implication of Theorem 4 is that, if we were to consider
only the admissible signals in CN as windows – which is
not unreasonable in many applications since one would like
to have ‘smooth’ and ‘fast-decaying’ windows for the time-
frequency analysis – thanks to Theorem 1, we can easily
construct nearly optimal windows for the Discrete Fourier
Transforms by periodizing Gaussian functions and taking
finite uniform samples as long as the Gaussian functions are
supported essentially on the interval of sampling. This is a
mild requirement due to the exponential decay of the Gaussian
functions, especially when N is large.

We must keep in mind that ‘discrete gaussians’ above are,
a priori, nearly optimal only among admissible signals in CN ;
however, we will demonstrate in the up-coming work that the
near optimality of the discrete gaussians may be valid for
‘all signals’ in CN . More theoretical evidence related to the
near optimality of the discrete Gaussians will be given there.
We also show by numerical computation that the uncertainty
bound is indeed very close to 1/(16π2).

To conclude, we asserted that the uncertainty products of
admissible signals with constant ε in CN are bounded below
by constant close to 1/(16π2). Based on this claim, we derived
that the discrete Gaussians are near optimal windows among
the admissible signals.

Even though the near optimality of the discrete Gaussians
among all signals is strongly suspected, a definitive proof
is still missing and remains as future work. Also, as a side
problem, it would be interesting to study the characteristics of
the discrete Gaussians that arise from Gaussian functions with

wide support. For example, are those signals near optimal in
some other sense?

Finally, we mention the question of optimal windows for
distinguishing, e.g., linear chirps. In our follow-up, we take the
approach of this work and try to establish, at least formally,
that modulated discrete Gaussians (so that they themselves are
linear chirps) are nearly optimal as well.

ACKNOWLEDGMENT

This work is supported by the European project UNLocX
(FET-OPEN, grant number 255931). The author would like to
thank Bruno Torrésani and Benjamin Ricaud for helpful dis-
cussions on the subject. The author also thanks the reviewers
for their constructive comments.

REFERENCES
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