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Abstract—In light of the ever-increasing demand for new spec-
tral bands and the underutilization of those already allocated, the
new concept of Cognitive Radio (CR) has emerged. Opportunistic
users could exploit temporarily vacant bands after detecting the
absence of activity of their owners. One of the most crucial tasks
in the CR cycle is therefore spectrum sensing and detection
which has to be precise and efficient. Yet, CRs typically deal
with wideband signals whose Nyquist rates are very high. In this
paper, we propose to reconstruct the spectrum of such signals
from sub-Nyquist samples in order to perform detection. We
consider both sparse and non sparse signals as well as blind and
non blind detection in the sparse case. For each one of those
scenarii, we derive the minimal sampling rate allowing perfect
reconstruction of the signal spectrum in a noise-free environment
and provide recovery techniques. The simulations show spectrum
recovery at the minimal rate in noise-free settings.

I. INTRODUCTION

Spectral resources are traditionally allocated to primary
users (PUs). As most are already licensed, new applications
can hardly ever obtain access to free frequency bands. Para-
doxally, the over-crowded spectrum is usually significantly
underutilized as numerous studies have shown [1]–[3]. In order
to respond to the increasing demand for spectrum usage from
new users, the concept of Cognitive Radio (CR) [4], [5] has
recently been considered. In this approach, secondary users
opportunistically use temporarely vacant spectrum bands when
their owners are inactive.

In this scheme, the CR has to constantly monitor the spec-
trum and detect the PUs’ activity in order to select unoccupied
bands, before and throughout its transmission. Obviously, the
detection has to be extremely reliable and fast. On the other
hand, it is worthwhile for the CR to sense a wide band of
spectrum simultaneously, in order to increase the probability of
finding a vacant spectral band. Nyquist rates of such wideband
signals are very high and sometimes cannot even be met by
today’s best analog-to-digital converters (ADCs). Moreover,
the tremendous amount of samples such high rates generate
have to be processed by the CR, slowing down the digital
detection process.

To overcome the rate bottleneck, several new sampling
methods have recently been proposed [6]–[8] that reduce the
sampling rate in multiband settings below the Nyquist rate. In
[6]–[8], the authors derive the minimal sampling rate allowing
for perfect signal reconstruction in noise-free settings and

provide sampling and recovery techniques. However, when the
final goal is spectrum sensing and detection, reconstructing the
original signal is unnecessary. In this paper, we propose to only
reconstruct the signal spectrum from sub-Nyquist samples,
in order to perform signal detection. In [9], the authors
propose a method to estimate finite resolution approximations
to the true spectrum exploiting multicoset sampling. Spectrum
reconstruction is also considered in [10] both in the time
and frequency domains. However, no analysis on the minimal
sampling rate ensuring perfect reconstruction of the spectrum
was performed.

We consider the class of wide-sense stationary multiband
signals, whose frequency support lies within several con-
tinuous intervals (bands). We will consider three different
scenarii: (1) the signal is not assumed to be sparse, (2) the
signal is assumed to be sparse and the carrier frequencies
of the narrowband transmissions are known, (3) the signal is
sparse but we do not assume carrier knowledge. We consider
the sampling methods proposed in [6]–[8] and use a similar
recovery technique to those derived in [9], [10] in order to
reconstruct the signal spectrum from the sub-Nyquist samples.
Our main contribution is deriving the minimal sampling rate
allowing for perfect reconstruction of the spectrum in a noise-
free environment, for each one of the above three cases. We
show that the rate required for spectrum reconstruction is half
the rate that allows for perfect signal reconstruction, for each
one of the scenarii, namely the Nyquist rate, the Landau rate
[11] and twice the Landau rate [7].

This paper is organized as follows. In Section II, we present
the stationary multiband model and formulate the problem.
Section III describes the sub-Nyquist sampling stage and the
spectrum reconstruction. In Section IV, we derive the minimal
sampling rate for each one of the three scenarii described
above. Numerical experiments are presented in Section V.

II. SYSTEM MODEL AND GOAL

A. System Model

Let x(t) be a real-valued continuous-time signal, supported
on F = [−TNyq/2,+TNyq/2]. Formally, the Fourier transform
of x(t) defined by

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (1)
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is zero for every f /∈ F . We denote by fNyq = 1/TNyq the
Nyquist rate of x(t). We assume that x(t) is composed of
up to Nsig uncorrelated stationary transmissions with disjoint
frequency supports. The bandwidth of each signal does not
exceed 2B (where we consider both positive and negative
frequency bands together) [6]. We consider three different
scenarii.

1) No sparsity assumption: In the first scenario, we assume
no a priori knowledge on the signal and we do not suppose
that x(t) is sparse, namely 2NsigB ≤ fNyq .

2) Sparsity assumption and non blind detection: Here,
we assume that x(t) is sparse, namely 2NsigB � fNyq .
Moreover, the support of the potentially active transmissions
is known and correspond to the frequency support of licensed
users defined by the communication standard. However, since
the PUs’ activity can vary over time, we wish to develop a
detection algorithm that is independent of a specific known
signal support.

3) Sparsity assumption and blind detection: In the last
scenario, we assume that x(t) is sparse but we do not assume
any a priori knowledge on the carrier frequencies.

B. Problem Formulation

In each one of the scenarii defined in the previous section,
our goal is to assess which of the Nsig transmissions are active
from sub-Nyquist samples of x(t). For each signal, we define
the hypothesis Hi,0 and Hi,1, namely the ith transmission is
absent and active, respectively.

In order to assess which of the Nsig transmissions are active,
we will first reconstruct the spectrum of x(t). In our first and
third scenarii, we fully reconstruct the spectrum. In the second
one, we exploit our prior knowledge and reconstruct it only
at the potentially occupied locations. We can then perform
detection on the fully or partially reconstructed spectrum. Note
that, to do so, we do not sample x(t) at its Nyquist rate, nor
compute its Nyquist rate samples. For each one of the scenarii,
we derive the minimal sampling rate enabling perfect spectrum
reconstruction in a noise-free environment.

III. SUB-NYQUIST SAMPLING AND SPECTRUM
RECONSTRUCTION

We consider two different sampling schemes: multicoset
sampling [7] and the modulated wideband converter (MWC)
[6] which were previously proposed for sparse multiband
signals. We show that the reconstruction stage is identical
for both schemes. In this section, we reconstruct the whole
spectrum. In Section IV-B, we show how we can reconstruct
the spectrum only at potentially occupied locations when we
have a priori knowledge on the carrier frequencies.

1) Multicoset sampling: Multicoset sampling [12] can be
described as the selection of certain samples from the uniform
grid. More precisely, the uniform grid is divided into blocks
of N consecutive samples, from which only M are kept. The
ith sampling sequence is defined as

xci [n] =

{
x(nTNyq), n = mN + ci,m ∈ Z

0, otherwise, (2)

where 0 < c1 < c2 < · · · < cM < N−1. Let fs = 1
NTNyq

≥ B
be the sampling rate of each channel and Fs = [−fs/2, fs/2].
Following the derivations from multicoset sampling [7], we
obtain

z(f) = Ax(f), f ∈ Fs, (3)

where zi(f) = Xci(e
j2πfTNyq), 0 ≤ i ≤ M − 1 is the DTFT

of the multicoset samples and

xk(f) = X

(
f +

Kk

NTNyq

)
, 1 ≤ k ≤ N, (4)

where K = {(−N−12 , . . . , N−12 )} for odd N (see [7] for even
N ). Each entry of x(f) is referred to as bin since it consists
of a slice of the spectrum of x(t). The ikth element of the
M ×N matrix A is given by

Aik =
1

NTNyq
ej

2π
N ciKk . (5)

2) MWC sampling: The MWC [6] is composed of M
parallel channels. In each channel, an analog mixing front-end,
where x(t) is multiplied by a mixing function pi(t), aliases
the spectrum, such that each band appears in baseband. The
mixing functions pi(t) are required to be periodic. We denote
by Tp their period and we require fp = 1/Tp ≥ B. The
function pi(t) has a Fourier expansion

pi(t) =

∞∑
l=−∞

cile
j 2π
Tp
lt
. (6)

In each channel, the signal goes through a lowpass filter with
cut-off frequency fs/2 and is sampled at the rate fs ≥ fp.
For the sake of simplicity, we choose fs = fp. The overall
sampling rate is Mfs where M ≤ N = fNyq/fs. Repeating
the calculations in [6], we derive the relation between the
known DTFTs of the samples zi[n] and the unknown X(f)

z(f) = Ax(f), f ∈ Fs, (7)

where z(f) is a vector of length N with ith element zi(f) =
Zi(e

j2πfTs). The unknown vector x(f) is given by (4). The
M ×N matrix A contains the coefficients cil:

Ail = ci,−l = c∗il. (8)

For both sampling schemes, the overall sampling rate is

ftot =Mfs =
M

N
fNyq. (9)

A. Spectrum Reconstruction

We note that the systems are identical for both sampling
schemes. The only difference is the sampling matrix A. We
assume that A is full spark in both cases [6], [7]. We thus
can derive a method for spectrum reconstruction for both
sampling schemes together. We define the autocorrelation
matrices Rz = E[z(f)zH(f)] and Rx = E[x(f)xH(f)]. Then
from (3), we have

Rz = ARxAH. (10)
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Here the exposant H denotes the Hermitian operation. Our
goal is to recover Rx from Rz.

Since x(t) is a wide-sense stationary process, we have [13]

E[X(ω)X∗(ν)] = 2πPx(ω)δ(ω − ν) (11)

where Px(ω) denotes the spectrum of x(t). Therefore Rx is a
diagonal matrix with Rx(i, i) = Px(f + i

NTs
) [9]. It follows

that

rz = (A∗ ⊗A)vec(Rx) = (A∗ ⊗A)Brx , Φrx, (12)

where Φ = (A∗ ⊗ A)B. Here the exposant ∗ denotes the
conjugate operation. Here ⊗ is the Kronecker product, rz =
vec(Rz), B is a N2 × N selection matrix that has a ”1” at
the jth column and the [(j − 1)N + j]th row, 1 ≤ j ≤ N and
zeros elsewhere.

We wish to recover rx from rz. In the next section, we will
derive the conditions on the sampling rate for (12) to have a
unique solution.

IV. MINIMAL SAMPLING RATE

A. No sparsity Constraints

The system defined in (12) is overdetermined for M2 ≥ N ,
if Φ is full column rank. The following proposition provides
the condition for the system defined in (12) to have a unique
solution. Due to lack of space, the proofs of the following two
propositions are omitted here and will be found in a future
paper.

Proposition 1. Let A be a full spark M×N matrix (M ≤ N )
and B be a N2 × N selection matrix that has a ”1” at the
jth column and the [(j − 1)N + j]th row, 1 ≤ j ≤ N and
zeros elsewhere. The matrix C = (A∗ ⊗A)B is full column
rank if M2 ≥ N and 2M > N .

From Proposition 1, (12) has a unique solution if M2 ≥ N
and 2M > N . This can happen even for M < N which is
our basic assumption. If M ≥ 2, we have M2 ≥ 2M . Thus,
in this case, the values of M for which we obtain a unique
solution are N/2 < M < N .

In this case, the minimal sampling rate is

f(1) =Mfs >
N

2
B =

fNyq

2
. (13)

This means that even without any sparsity constraints on
the signal, we can retrieve its spectrum by exploiting its
stationary property, whereas the measurement vector z exhibits
no stationary constraints in general.

B. Sparsity Constraints - Non-Blind Detection

We now consider the second scheme, where we have
a priori knowledge on the frequency support of x(t) and
we assume that it is sparse. Instead of reconstructing the
entire spectrum, we propose to exploit our knowledge of the
signal’s potential frequencies in order to further reduce the
reconstruction problem and only reconstruct the potentially
occupied bands.

In this scenario, the only non zero elements of Rx are
Kf � N diagonal elements. The reduced dimensionality
spectrum is defined as

r̂x = Mfrx. (14)

Here Mf ∈ RKf×N is a matrix with elements equal to 1
at the indices of potential non-zero entries and r̂x ∈ CKf×1.
Furthermore, we also define G to be the N ×Kf matrix that
selects the corresponding Kf columns of Φ and Φ̂ = ΦG.
The reduced problem can then be expressed as

rz = Φ̂r̂x. (15)

The following proposition provides the condition for the
system defined in (12) to have a unique solution.

Proposition 2. Let A be a full spark M×N matrix (M ≤ N )
and B be defined as in Proposition 1. Let C = (A∗ ⊗A)B
and G be the N ×Kf that selects any Kf < N columns of
C. The matrix D = CG is full column rank if M2 ≥ Kf and
2M > Kf .

In this case, the minimal sampling rate is

f(2) =Mfs >
Kf

2
B = NsigB. (16)

Landau [11] developed a minimal rate requirement for
perfect signal reconstruction in the non-blind setting, which
corresponds to the actual band occupancy. Here, we find that
the minimal sampling rate for perfect spectrum recovery is
half the Landau rate.

C. Sparsity Constraints - Blind Detection

We now consider the second scheme, namely x(t) is sparse,
without any a priori knowledge on the support. In the previous
section, we showed that Φ̂ is full column rank, for any choice
of Kf columns of Φ (that correspond to Kf columns of A),
if M2 ≥ Kf and 2M > Kf . Therefore, for M ≥ 2, if rx is
M -sparse, it is the unique sparsest solution of (12).

In this case, the minimal sampling rate is

f(3) =Mfs > KfB = 2NsigB. (17)

As expected, this is twice the rate obtained in the previous
case. As in signal recovery, the minimal rate for blind recon-
struction is twice the minimal rate for non-blind reconstruction
[7].

V. SIMULATION RESULTS

We now demonstrate spectrum reconstruction from sub-
Nyquist samples obtained close to the minimal sampling rate
for the first and third scenarii, respectively. We use the MWC
analog front-end [6] for the sampling stage.

It is interesting to notice that (12), which is written in
the frequency domain, is valid in the time domain as well.
We can therefore estimate rz(f) and reconstruct rx(f) in the
frequency domain, or alternatively, we can estimate rz[n] and
reconstruct rx[n] in the time domain. In order to estimate the
autocorrelation matrix Rz(f), we first compute the estimates
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of zi(f), 1 ≤ i ≤ M , ẑi(f), using FFT on the samples zi[n]
over a finite time window. We then estimate the elements of
Rz(f) as

R̂z(i, j, f) =
1

P

P∑
p=1

ẑp(i, f)ẑp(j, f), f ∈ Fs, (18)

where P is the number of frames for the averaging of the
spectrum and ẑp(i, f) is the value of the FFT of the samples
zi[n] at the frequency f and the pth frame. In order to estimate
the autocorrelation matrix Rz[n] in the time domain, we
perform a convolution between the samples zi[n] over a finite
time window as

R̂z[i, j, n] =
1

P

P∑
p=1

zpi [n] ∗ z
p
j [n], n ∈ [0, T/TNyq]. (19)

We first consider the spectrum reconstruction of a non
sparse signal. Let x(t) be white Gaussian noise with variance
100, and Nyquist rate fNyq = 10GHz with two stop bands. We
consider N = 65 spectral bands and M = 33 analog channels,
each with sampling rate fs = 154MHz and with Ns = 131
samples each. The overall sampling rate is therefore equal to
50.77% of the Nyquist rate. Figure 1 shows the original and
the reconstructed spectrum at half the Nyquist rate (both with
averaging over P = 1000).

Fig. 1. Original and reconstructed spectrum of a non sparse signal at half
the Nyquist rate.

We now consider the blind reconstruction of a sparse signal.
Let the number of potentially active transmissions Nsig = 6
and the actual number of active transmissions be 3. Each
transmission is white Gaussian noise with variance 100 and
Nyquist rate fNyq = 10GHz, filtered by a bandpass filter
whose central frequency is drawn uniformly at random and
whose bandwidth is B = 120Mhz. We consider N = 75
spectral bands and M = 13 analog channels, each with sam-
pling rate fs = 133MHz and with Ns = 131 samples each.
The overall sampling rate is equal to 110% of the minimal

rate (17). Figure 2 shows the original and the reconstructed
spectrum at 17.3% of the Nyquist rate (both with averaging
over P = 1000 frames).

Fig. 2. Original and reconstructed spectrum of a non sparse signal at 17.3%
of the Nyquist rate.

We note that the difference between the original and the
reconstructed spectrum comes from the fact that the matrix
Rx(f) is not perfectly diagonal.
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