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Abstract—In this paper, we focus on the problem of interpo-
lating a continuous-time AR(1) process with stable innovations
using minimum average error criterion. Stable innovations can
be either Gaussian or non-Gaussian. In the former case, the
optimality of the exponential splines is well understood. For non-
Gaussian innovations, however, the problem has been all too often
addressed through Monte Carlo methods. In this paper, based
on a recent non-Gaussian stochastic framework, we revisit the
AR(1) processes in the context of stable innovations and we derive
explicit expressions for the optimal interpolator. We find that the
interpolator depends on the stability index of the innovation and
is linear for all stable laws, including the Gaussian case. We also
show that the solution can be expressed in terms of exponential
splines.

I. INTRODUCTION

Autoregressive (AR) processes are popular tools for mod-
eling natural phenomena such as speech signals [1]. The
processes are usually characterized by an all-pole filter that
acts on the innovation process (white excitation noise). They
are indexed by the number n of poles of the filter, as AR(n).
The AR family contains both stationary and non-stationary
models.

The AR processes were historically founded upon Gaus-
sian statistics. Extensions to non-Gaussian scenarios were
introduced later, for instance in financial applications, where
the data follow a fat-tailed distribution [3], [4]. Besides,
fat-tailed distributions are promising models for representing
sparse/compressible data [5]. This fact is recently employed
in the framework of sparse stochastic processes [6], [7]
which proposes a unified approach towards Gaussian and non-
Gaussian cases.

The estimation problems arising from AR processes are
conventionally studied in a finite-dimensional state-space, re-
sulting in the Kalman filter. Under Gaussian statistics, the
Kalman filter coincides with the Bayesian estimator (posterior
mean estimator) that minimizes the mean-square error. In non-
Gaussian scenarios, however, it is common to either apply
the Bayesian estimator on approximated posterior distributions
[8], [9], [10] or to realize the Bayesian filter numerically [11],
[12], [13].

In this paper, we focus on continuous-time AR(1) processes
and investigate the problem of Bayesian interpolation between
the samples. Our formulation is based on the characteristic
forms introduced in [6]. We show that the Bayesian interpo-
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Fig. 1. Generation of the stochastic AR(1) process s(x) based on the
excitation white noise w(x). The inverse linear operator L−1 includes the
possible boundary condition.

lator is linear with respect to the samples when the process
follows a symmetric α-stable distribution. The demonstration
of linearity is constructive, in the sense that we derive explicit
forms for the Bayesian interpolator.

II. AR(1) MODEL

The model in this paper is a special case of [6] adapted for
AR(1) processes. The schematic diagram of the continuous-
time model is given in Figure 1. The process of interest, s,
satisfies the stochastic differential equation

d

dx
s(x) + κs(x) = w(x), (1)

where w is a stationary white α-stable excitation with 1 ≤
α ≤ 2 and κ ∈ R is a constant. Equation (1) suggests the
filter D + κI as the whitening operator, where D and I stand
for the derivative and identity operators, respectively. This
whitening operator has a one-dimensional null space spanned
by the function e−κx.

For a proper definition of the process, the shaping operator
L−1 (inverse of the whitening operator), which transforms the
innovations into the main process, needs to be stable. For κ 6=
0, the system D+κI has a unique stable inverse which is shift-
invariant and corresponds to the impulse response e−κxχR+0

(x)

for κ > 0 and e−κxχR+0
(−x) for κ < 0, where χR+0

(·) denotes
the characteristic function of the nonnegative real numbers
(step function).

For κ = 0, however, there exists no stable inverse. It is
shown in [6] that L−1 =

∫ x
0

, which is weakly stable (finite-
input finite-output), is a valid choice for κ = 0. Nevertheless, it
imposes s(0) = 0 (boundary condition) and makes the process
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s non-stationary. A more general way of setting the boundary
condition is given by

L−1{w}(x) =
∫ x

0

w(τ)dτ + 〈w, φ〉, (2)

where φ is an anti-causal function that decreases rapidly and
〈w, φ〉 =

∫
w(τ)φ(τ)dτ in the sense of generalized functions.

The anti-causal choice of φ shows that, for all x > 0, the
random variable L−1{w}(x) is statistically independent of
w(τ) for τ > x. This will later help us in simplifying the
estimation procedure.

Since the innovation process is white and the impulse
response of the shaping operator for (−κ) is the time-reversal
of the one for κ 6= 0, we expect to obtain the interpolation
results of (−κ) by time-reversing the results for κ. Therefore,
without loss of generality, we shall assume κ ≥ 0.

Finally, the samples of the AR(1) process are taken at the
integers 0, 1, . . . ,m. They are then used to interpolate the
process values in the interval [0,m]. For the sake of simplicity,
we use s[k] to denote the sample s(x)|x=k for k = 0, 1, . . . ,m.

III. INTERPOLATION

Our approach to the interpolation problem is to estimate the
process values on a finer grid with spacing T that contains
the integers. For this reason, we set T = 1

N , where N is
an arbitrary large positive integer. In this approach, we can
get arbitrarily close to any desired point by increasing N .
We represent the values s(x)|x=kT for k = 0, 1, . . . ,mN ,
which we want to estimate, by sT [k]. Clearly, sT [kN ] (or
s1[k]) represent the known samples and we do not need to
estimate them. Since the definition of the process s might
include a boundary condition, it is not necessarily stationary,
which complicates our analysis. Hence, we prefer to work with
the generalized-increment process defined as

uT [k] = sT [k]− e−κT sT [k − 1]. (3)

To relate the generalized increments to the innovation process,
recall that

sT [k] = L−1w(x)
∣∣∣
x=kT

=

∫ kT

ηκ

w(τ)e−κ(kT−τ)dτ + cw,κ, (4)

where ηκ = −∞ and cw,κ = 0 for κ > 0, and ηκ = 0 and
cw,κ = 〈w, φ〉 for κ = 0. By substituting sT [k] and sT [k− 1]
from (4) into (3), we see that the null-space term vanishes and
we obtain

uT [k] =

∫ kT

(k−1)T
w(τ)e−κ(kT−τ)dτ. (5)

The outcome can be written in form of an inner product as

uT [k] =
〈
w , βκ,T (kT − ·)

〉
, (6)

where

βκ,T (x) = e−κx
(
χR+0

(
x
)
− χR+0

(
x− T

))
. (7)

The function βκ,T is usually known as the exponential B-
spline for the grid spacing T [14]. It is supported on [0, T ).

A. Preliminary Results

To further proceed in solving the interpolation problem, we
need to use a few results regarding the increment process
which we state below in the form of 3 lemmas.

Lemma 1: Let k, k
′

be nonnegative integers and T, T
′

be
positive reals. For the generalized increments uT we have

(i) uT [k] and uT ′ [k
′
] are independent if T

T ′
/∈ (k

′−1
k , k

′

k−1 );

(ii) uT [k] and sT ′ [k
′
] are independent if k

′

k−1 ≥ T
T ′

;
(iii) uT [k] and uT [k

′
] are identically distributed.

Proof From (6) and since βκ,T is of finite support, we
know that the statistics of uT [k] are completely determined
by w

(
(k − 1)T < x ≤ kT

)
. Condition (i) guarantees

that the parts of the innovation contributing to uT [k] and
uT ′ [k

′
] are disjoint. Since the innovation is white, the two

are independent. Similarly, Condition (ii) implies disjointness
of the innovation parts involved in forming uT [k] and sT ′ [k

′
]:

the LSI part of sT ′ [k
′
], due to the use of causal filters, depends

only on w(x ≤ k
′
T
′
), while the boundary condition is fully

determined by w(x ≤ 0). Thus, for nonnegative k
′
, sT ′ [k

′
] is

statistically independent of w(k
′
T
′
< x). The validity of (iii)

is a direct consequence of the stationarity of the innovation.
�

Lemma 2: For any positive integer n, we have that

unT [k] =

n−1∑
i=0

e−iκTuT [kn− i]. (8)

Proof We show this property by pointing out the refinement
equation of βκ,nT

βκ,nT (x) = e−κx
(
χR+0

(x)− χR+0
(x− nT )

)
=

n−1∑
i=0

e−iκT e−κ(x−iT )
(
χR+0

(x−iT )− χR+0
(x−iT−T )

)
=

n−1∑
i=0

e−iκTβκ,T (x− iT ). (9)

Now, it is easy to conclude the claim by applying (9) to (6).
�

Lemma 3: For any positive integer i, we have that

sT [k + i]− e−iκT sT [k] =
i∑

θ=1

e−(i−θ)κTuT [k + θ]. (10)

Proof The proof requires only the substitution of uT by its
definition in (3). �

B. Minimum Conditional Mean-Square Error

The well-known minimum mean-square error (MMSE) esti-
mation of a random variable x based on the multidimensional
random variable y (observations) is the function x̂(y) =
E{x

∣∣y} that minimizes the cost E
{
(x̂(y) − x)2

}
. Note that

the averaging applies over both x and y. Consider now that
we are estimating x based on a deterministic measurement
vector y that is an observed realization of some multivariate
random variable. In this case, we should modify the cost to
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Ex
{
(x̂(y) − x)2|y

}
, which again results in x̂(y) = E{x

∣∣y}
(i.e., the Bayesian estimator). More precisely, the Bayesian
estimator x̂(y) = E{x

∣∣y} not only minimizes the average
quadratic cost over all realizations, but also minimizes the
cost for every individual realization. The distinction is revealed
when y follows a heavy-tail distribution with infinite variance
(e.g., a non-Gaussian α-stable). Here, the cost function for
each realization y might be finite while the average over
all y often does not exist. In other words, the conditional
expectation defines an optimal estimator for the modified cost,
while the MSE might not be defined. It is obvious that the
Bayesian estimator coincides with the MMSE estimator when
it exists.

With respect to the conditional MSE criterion, the optimal
interpolation for sT [k], using the given samples s[l]ml=0, is
given by E

{
sT [k]

∣∣ s[l]ml=0

}
. By using Lemma 3, for 0 ≤ k <

m and 0 < i < N where T = 1
N , we have that

E
{
sT [kN + i]

∣∣∣ {s[l]}ml=0

}
− e−iκT s[k]

=

i∑
θ=1

e−(i−θ)κTE
{
uT [kN + θ]

∣∣∣s[l]ml=0

}
. (11)

The one-to-one mapping between the sets s[l]ml=0 and
{u1[l]}ml=1 ∪ {s[0]} allows us to rewrite the conditional ex-
pectations as

E
{
uT [kN + θ]

∣∣∣s[l]ml=0

}
=E
{
uT [kN + θ]

∣∣∣u1[l]ml=1, s[0]
}
. (12)

It follows from (12) and Lemma 1 that uT [kN + θ] is
independent of s[0] and u1[l]ml=1 except for l = k + 1. Thus,

E
{
sT [kN + i]

∣∣∣ s[l]ml=0

}
− e−iκT s[k]

=
∑i
θ=1 e

−(i−θ)κTE
{
uT [kN + θ]

∣∣∣u1[k + 1]
}
. (13)

To simplify the notations, we represent the random variables
uT [kN + θ] by Xθ and the weights e−θκT by dθ. Lemma 1
shows that Xθ are i.i.d., and from Lemma 2 we know that

u1[k + 1] =

N∑
l=1

e−(N−l)κTuT [kN + l] =

N∑
l=1

dN−lXl. (14)

Hence,

E
{
uT [kN + i]

∣∣∣u1[k + 1]
}

= E
{
Xi

∣∣∣ ∑N
l=1 dN−lXl

}
. (15)

The summary of the results in (11)–(15) is

ŝT [kN + i] =
s[k]

eiκT

+

∑i
θ=1 E

{
dN−θXθ

∣∣ ∑N
l=1 dN−lXl = u1[k + 1]

}
e(i−N)κT

. (16)

C. Stable Distributions

Up to this point, our results were generic and applicable to
all innovation models. We now concentrate on the symmetric
α-stable innovations and try to extract the conditional expecta-
tions explicitly. For an α-stable innovation w, the inner product
〈w,ϕ〉 follows an α-stable distribution for any acceptable test
function ϕ[15]. In particular, the distribution of uT (or Xθ)
is α-stable from (6). If we denote the probability density
and characteristic functions (Fourier transform of the density
function) of uT by pX and p̂X , respectively, the α-stable
law implies p̂X(ω) = exp

(
−σ|ω|α

)
for some positive real

σ. Unfortunately, there is no closed form for the density
function in general. In addition, the characteristic function of
the random variable

∑
i ciXi, which again follows an α-stable

distribution, is given by exp
(
− σ|ω|α∑i |ci|α

)
[15]. This

shows that, if Y1 = dN−θXθ and Y2 =
∑N
l=1,l 6=θ dN−lXl,

then we should have{
p̂Y1 = exp

(
− σ|ω|α|dN−θ|α

)
,

p̂Y2
= exp

(
− σ|ω|α∑N

l=1,l 6=θ |dN−l|α
)
.

(17)

Note that Y1 and Y2 are independent and that the conditional
expectations in (16) are equal to

E
{
dN−θXθ

∣∣ N∑
l=1

dN−lXl = u1[k + 1]
}

= E
{
Y1
∣∣Y1 + Y2 = u1[k + 1]

}
=

∫
R y pY1

(y) pY2

(
u1[k + 1]− y

)
dy

pY1+Y2

(
u1[k + 1]

) . (18)

The latter integral can be converted to the Fourier domain by
employing Parseval’s theorem, which results in∫

R
y pY1(y) pY2

(
u1[k + 1]− y

)
dy

=

∫
R
Fy
{
y pY1

(y)
}
(ω)Fy

{
pY2

(
u1[k + 1]− y

)}
(ω) dω

=

∫
R

d

dω
p̂Y1

(ω)p̂Y2
(ω)

e−jωu1[k+1]

j
dω

= |dN−θ|α
∫
R

−σα|ω|αe−jωu1[k+1]−σ|ω|α∑N−1
l=0 |dl|α

jω
dω.

(19)

On one hand, the main message from (18) and (19) is that

E
{
dN−θXθ

∣∣ ∑N
l=1 dN−lXl = u1[k + 1]

}
|dN−θ|α

= const., (20)

where const. does not depend on θ. On the other hand,
N∑
θ=1

E
{
dN−θXθ

∣∣ N∑
l=1

dN−lXl = u1[k + 1]
}
= u1[k + 1]. (21)

Now, by combining (20) and (21), we can evaluate the
conditional expectations without performing the integration,
as

E
{
dN−θXθ

∣∣ N∑
l=1

dN−lXl = u1[k + 1]
}

=
|dN−θ|αu1[k + 1]∑N

l=1 |dN−l|α
. (22)
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The main result of this paper is given in Theorem 1 which
is now easy to verify from (16) and (22).

Theorem 1: For the AR(1) process s associated with the
whitening operator D + κI with α-stable innovations, the
optimal Bayesian interpolation at the point x∗ = k+λ, where
0 ≤ λ ≤ 1 is a rational number and k is a nonnegative
integer, depends only on the neighboring samples s(x = k)
and s(x = k+1). Moreover, the dependence is linear and can
be expressed as

ŝ(x∗) = πλ s(k) + νλ s(k + 1), (23)

where  πλ = e(
α
2−1)λκ sinh(α2 (1−λ)κ)

sinh(α2 κ)
,

νλ = e(
α
2−1)(λ−1)κ sinh(α2 λκ)

sinh(α2 κ)
,

(24)

if κ 6= 0 and, otherwise,{
πλ = 1− λ
νλ = λ.

(25)

It is interesting that, for κ = 0 (Lévy process) and indepen-
dently of the stability index (α), the optimal interpolator is the
simple first-degree B-spline. Also, to compare the result with
the classical Gaussian theory, we use α = 2 and obtain{

πλ = sinh(1−λ)κ
sinhκ ,

νλ = sinhλκ
sinhκ .

(26)

IV. SIMULATIONS

To show the impact of our results, we have applied our
interpolator to MATLAB simulated data. For this purpose,
we have plotted a realization of an α-stable AR(1) process
with α = 3

2 and κ = 5 in Figure 2. We have used the
values at the integers as the samples for interpolating the
process. As is evident in Figure 2, the curves connecting the
points deviate from straight lines and are not even piecewise
monotonic (e.g., the part corresponding to the interval [9,10]).
In fact, the statistics of the model show that, for each pair of
adjacent samples, the distribution of the values between them
is biased in favor of one of the sides of the line connecting
the two samples. It is comforting to observe that the curve of
the optimal interpolator is bent towards the same direction.
From Figure 2, it is evident that the optimal interpolator
takes advantage of knowing the system parameters and better
follows the process than the outcome of the uninformed first-
degree B-spline.

V. CONCLUSION

In this paper, we studied the interpolation problem for
the first-order autoregressive processes generated from stable
innovations, including non-Gaussian ones. We applied the
Bayesian estimator which minimizes the mean-square error
under Gaussian distributions and conditional mean-square er-
ror under stable laws that have infinite variance. We derived
explicit forms for the optimal interpolator in a general setting
and found that it is linear with respect to the samples.
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Fig. 2. A realization of the AR(1) process with κ = 5 and α = 1.5, and
the interpolated function using the samples at the integers.

Moreover, it depends on the stability index that characterizes
stable innovations. Our derivations rely on exponential splines.

ACKNOWLEDGMENT

The research is supported by the European Commission
under Grant ERC-2010-AdG 267439-FUN-SP.

REFERENCES

[1] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. of the IEEE, vol. 77, no. 2,
pp. 257–286, Feb. 1989.

[2] H. Kirshner, S. Maggio, and M. Unser, “A sampling theory approach
for continuous ARMA identification,” IEEE Trans. Sig. Proc., vol. 59,
no. 10, pp. 4620–4634, Oct. 2011.
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