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Université catholique de Louvain, Belgium.
Email: firstname.secondname@uclouvain.be

Xavier Dubois, Philippe Antoine and Luc Joannes
Lambda-X

Nivelles, Belgium.
Email: firstname.secondname@lambda-x.com

Abstract—Schlieren deflectometry aims at measuring deflec-
tions of light rays from transparent objects, which is subsequently
used to characterize the objects. With each location on a
smooth object surface a sparse deflection map (or spectrum)
is associated. In this paper, we demonstrate the compressive
acquisition and reconstruction of such maps, and the usage
of deflection information for object characterization, using a
schlieren deflectometer. To this end, we exploit the sparseness of
deflection maps and we use the framework of spread spectrum
compressed sensing. Further, at a second level, we demonstrate
how to use the deflection information optimally to reconstruct the
distribution of refractive index inside an object, by exploiting the
sparsity of refractive index maps in gradient domain.

I. INTRODUCTION

Schlieren deflectometry is a modality to measure the de-
flections undergone by light in a transparent object [1]. These
deflections are used to characterize the properties of the trans-
parent objects such as the surface curvature, distribution of
the refractive index, etc. Unlike interferometry, deflectometry
is insensitive to vibrations and hence is very attractive for
industrial deployment (e.g., for quality control).

Considering a thin transparent object with an incident paral-
lel beam of light rays, as shown in Fig. 1(left). At each surface
location p, the function of our interest is a deflection spectrum
s̃p(θ, ϕ) ∈ R+, representing the flux of the light deviated in
the direction (θ, ϕ), in a spherical coordinate system. These
deflection spectra provide information about the curvature of
the object, and hence it is interesting to study them.

For convenience, s̃p is represented in this paper by its
projection in the Πp = e2e3 plane, i.e., according to the
projected function sp(r(θ), ϕ) = s̃p(θ, ϕ) with r(θ) = tan θ.
Moreover, the object surface is assumed sufficiently smooth
for being parametrized by a projection of p in the same plane
(on a arbitrary fixed origin), so that p is basically a 2-D vector.

An important feature of deflections is that for most objects
(e.g., with smooth surfaces), for any location p, the flux is
limited to range of angles and hence the deflection spectra
therefore tend to be naturally sparse in plane Πp or in some
appropriate basis of this domain (e.g., wavelets). Fig. 1(right)
shows an example of a discretized deflection spectrum sp for
one location of a plano convex lens obtained using the setup
described in Sec. II. The white spot in the image signifies
that deflections occur at only a few angles (as governed by
classical optics) and deflections elsewhere are negligible.

The optical setup described in Sec. II measures the deflec-
tion spectrum sp for each location p indirectly by optical
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Fig. 1: Left, illustration of a deflection spectrum. Right, a typical (projected)
deflection spectrum sp for a plano convex lens of optical power 25.12D.

comparison with a certain number of programmable modula-
tion patterns. Computationally, these optical comparisons are
nothing but inner products between the deflection spectrum
and the modulation patterns. By assuming an extreme case of
the spectrum being a mere impulse, Phase Shifting Schlieren
(PSS) method measures the deflection angles by using multi-
line phase shifted patterns in the SLM [2]. However, it is a
limitation to ignore the richness of the deflection spectrum.

To this end, aided by the hindsight that each deflection
spectra is sparse, we use the framework of spread spectrum1

compressive sensing [3], described in Sec. III, to capture
maximum information about the spectrum using relatively few
modulation patterns, and then reconstruct the spectrum at each
location by solving an inverse problem. In effect, each CCD
pixel of our system behaves like a single pixel camera [4], but
for deflection spectrum.

In Sec. IV, we present the numerical results of reconstruct-
ing deflection spectra from deflectometric measurements, after
calibrating the system relative to its intrinsic noise. By making
further assumptions about the spectra, we show in Sec. V how
the deflection information can be obtained without explicit
reconstruction of the spectra.

If the object contains regions of varying refractive index,
then light undergoes deflections internally and at each surface
location only the resultant deflection is measured. Therefore,
the deflections provide indirect information about the distri-
bution of the refractive index (henceforth called Refractive
Index Map (RIM)). This necessitates measuring deflections for
several orientations of the object in order to recover the RIM.
Sec. VI briefly describes how the sparsity of RIM helps in its
reconstruction using deflections from only few orientations.

1“Spread Spectrum” is not related to the studied deflection “spectrum” but
it refers to the signal frequency spectrum.
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Fig. 2: A 2-D schematic of Schlieren deflectometer.

II. SCHLIEREN DEFLECTOMETER

Deflection spectra can be measured by the Schlieren deflec-
tometer, shown in Fig. 2, which consists of (i) a Spatial Light
Modulator (SLM), (ii) the Schlieren lens with focal length f ,
(iii) the Telecentric System (TS) and (iv) the Charged Coupled
Device (CCD) camera collecting the light.

The object to be analyzed is placed in between the Schlieren
lens and the telecentric system. It is shined on its left by
a light source and, due to the telecentric system, only the
parallel light rays emerging out of the object are collected by
the CCD. Moreover, up to a flip around the optical axis, each
location p on the object at a distance τ from the optical axis
O (dashed line), is probed by a corresponding CCD pixel also
at a distance of τ from O. Each location p is thus in one-to-
one correspondence with a CCD pixel and we will sometimes
consider p as CCD pixel location.

From classical optics, a light ray that is incident on location
p at an angle θp originates from the light source at a
distance of ∆x = f tan θp from the optical axis. Likewise,
the light rays originating at different locations on the source
have different incident angles at p. Since we can always
virtually invert the light propagation in the system, everything
works as if the object was shined on its right by a beam of
parallel light rays. Therefore, up to a global scaling by f , the
SLM plane is actually the local plane Πp of the deflection
spectrum occurring at p. Modulating the SLM corresponds to
modulating sp, while the light collected in CCD pixel p is
just an inner product of sp with the modulation.

If we generate M such modulations φi ∈ RN with 1 ≤ i ≤
M in the SLM of N pixels, considering the discrete nature of
the CCD camera (having NC pixels), the discretized deflection
spectra are observed through

yk = Φsk + n, 1 ≤ k ≤ NC, (1)

where ΦT = (φ1, · · · ,φM ) ∈ RN×M is the sensing matrix, k
is a CCD pixel index, sk ∈ RN is the discretized spectrum at
the kth pixel/object location, and n models the measurement
noise (assumed Gaussian). Notice that the SLM and the CCD
2-D grids are represented as 1-D spaces for brevity of notation,
so that Φ is then a sensing 2-D matrix acting on 1-D vectors.

To optimize the design of Φ we rely upon spread spectrum
compressed sensing theory.

III. SPREAD SPECTRUM COMPRESSIVE SENSING

In Spread Spectrum Compressive Sensing (SSCS), a sig-
nal x = Ψα ∈ CN , having a sparse representation in
an orthonormal sparsity basis Ψ ∈ CN×N , i.e., ‖α‖0 :=
#{j : αj 6= 0} ≤ K � N is randomly pre-modulated

before sensing [3]. Given a Rademacher or Steinhaus sequence
m ∈ CN , |mi| = 1, the sensing process is summarized by

y = Γ∗ΩMΨα + n, (2)

where ∗ denotes the conjugate transpose, Γ ∈ CN×N is an
orthonormal sensing basis, ΓΩ is the M×N submatrix formed
by restricting the columns of Γ to those in Ω ⊂ [N ] :=
{1, · · · , N},M = diag(m) and n is a Gaussian noise vector.

The signal is reconstructed by solving a convex optimization
problem, known as Basis Pursuit De-Noising (BPDN) [5]

α̂ := arg min
α̃∈CN

‖α̃‖1 subject to ‖y −Φα̃‖2 ≤ ε, (3)

where Φ = Γ∗ΩMΨ, and ε is a bound on ‖n‖2 ≤ ε.
For a given ε, the number of measurements M required

by (3) to find a solution is, in general, governed by the sparsity
level K and the coherence

µ := max
1≤i,j≤N

|〈γi,Mψj〉|, (4)

where γi and ψj are the columns of sensing and sparsity
matrices respectively [3], [6]. Smaller the coherence, lesser is
the number of measurements required for successful recovery
of the solution, with a high probability.

Defining CΓ,Ψ = max1≤i,j≤N ‖γi ◦ψj‖2, where ◦ denotes
pointwise product, the mutual coherence µ obeys

µ ≤ CΓ,Ψ

√
2 log(2N2/δ), (5)

with probability at least 1 − δ. When Γ is a universal basis,
i.e., when all the entries have the same complex amplitude c,
spread spectrum is optimal with CΓ,Ψ = c and the coherence
µ ' c, with a very high probability, irrespective of the
sparsity basis. Specifically, for Fourier and Hadamard bases,
µ ' 1/

√
N with high probability. We see in next section how

to exploit the spread spectrum CS method in our optical setup.

IV. DEFLECTION SPECTRUM RECONSTRUCTION

To apply the ideas of spread spectrum CS to schlieren
deflectometry, certain practical aspects have to be considered.
Most importantly, as the Spatial Light Modulator (SLM)
accepts only real and non-negative valued entries, we use
the Hadamard (universal) basis H combined with a random
Rademacher vector m with mi = ±1 independently with
equal probability for sensing.

Further, the sensing basis is biased to have all the entries
non-negative and an extra measurement is obtained to remove
the bias during reconstruction. The details about obtaining the
measurements can be found in [7].

Noise estimation: If there is no test object, then by classical
optics the measured deflection spectrum is constant in all
CCD pixels and corresponds to a simple disk centered on the
origin of the spectrum domain. We denote it as sno. The disk
diameter is proportional to the pinhole diameter of the system
(see Fig. 2). This prior information aids us in calibrating the
system and in estimating the noise level on the measurements.

From actual measurements in the absence of test object, we
obtain, on an arbitrary CCD pixel, yno = Φ(sno +ns) +ny ,
where ns and ny are the unknown signal and observation
noises. After a small calibration of the SLM origin, and up to
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Fig. 3: An example of reconstruction using 2.5%, 10% and 100% of
measurements.

a small optimization of the disk height in sno, we can therefore
compute a bound on the noise power as ε = ‖Φns+ny‖2 =
‖yno−Φsno‖2. We can either obtain this value for every M or
estimate it for M = N only and scale the result as ε(M) =√
M + 2

√
M ε(N)/

√
N for M < N . This estimate stems

from the concentration properties of χ2
M random variables.

Reconstruction procedure: For the reconstruction, we use
the Daubechies 9/7 wavelet basis as our sparsity basis [8]
which offers a sparser representation of the spectra than the
canonical (Dirac) basis. To reconstruct the spectrum at any
location k, an estimate of the sparse wavelet coefficients α̂k
is obtained by solving (3) with the ε estimated above. The
spectrum is then estimated by ŝk = Ψ∗α̂k. To solve (3),
we used the Chambolle-Pock algorithm, a first order primal-
dual method for solving convex optimization problems using
proximal operators [9]. Compared to a previous work on
this subject [7], the reconstruction performance improved by
constraining the estimate ŝk to be non-negative.

For evaluating compressive reconstruction performance, (3)
was solved with M = N measurements to obtain the reference
reconstruction s̃k. Reconstructions for M < N were compared
with s̃k using the (output) Signal-to-Noise Ratio oSNR :=
20 log10(‖s̃k‖2/‖s̃k − ŝk‖2).

Experimental Results:2 For experiments, we considered two
plano convex lenses of optical powers 10.03D and 60D, and
restricted the size of spectrum to 64× 64 centered around the
SLM origin, resulting in N = 4096. For 5 CCD locations, 10
independent reconstruction trials were performed for several
values of M , by randomly drawing a new Ω ⊂ [N ] every time.

Fig. 3 shows an example of deflection spectrum recon-
structed using 2.5%, 10% and 100% of measurements, for the
lens with 10D optical power. Note that the spectrum is well
localized and sparse, corroborating our initial observation.

Fig. 4 shows the plot of oSNR versus the number of
measurements M/N (in %), averaged over the trials and
locations. The curves with square markers correspond to the
solutions obtained using additional non-negativity constraints
and the rest correspond to the lack of it. The oSNR improves
as M/N increases, as expected. Though the absolute values
of oSNR seem low, its significance has to be understood in the
light of the input SNR, which is approximately computed as
iSNR := 20 log10(‖Φsno‖2/‖yno−Φsno‖2) ' 4.34 dB. The
horizontal dotted line on the plot indicates the iSNR for our
experiments, and it is clear that the reconstruction procedure
improves the oSNR, beyond the iSNR, thereby demonstrating

2Computational resources have been provided by the supercomputing facili-
ties of the Université catholique de Louvain (CISM/UCL) and the Consortium
des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI)
funded by the F.R.S.-FNRS under convention 2.5020.11.
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Fig. 4: Average reconstruction oSNR (in dB) as a function of M/N .

the ability of CS reconstruction of deflection spectra in low
input SNR regime.

V. OBTAINING DEFLECTIONS WITHOUT RECONSTRUCTION

Reconstruction of deflection spectra is a computationally
intensive task and therefore if the objective is only to detect the
location of the important feature of the spectrum (in our case,
the location of the bright spot), then the idea of compressive
domain signal processing can be used [10], [11]. Assuming
that a template gρ for the feature can be built, the feature
can be localized using a matched filtering operation performed
directly on the measurements, without reconstructions. These
locations provide a first guess of the deflections.

For compressive spectrum detection, given deflectometric
measurements yk, we simply solve the following [7]

τ̃k = arg max
τ
|〈ΦTyk, g

ρ
τ 〉|, (6)

where gρτ is gρ translated by τ .
The experimental results showed that the distance between

the centroids computed using compressive measurements and
full reconstruction becomes sub-pixel for measurements size
M/N as low as 4%, and continues to decrease as M increases.
The evolution of the centroid estimation error versus the
number of measurements M/N is available in [7].

We shall now see how to utilize deflection information for
certain meaningful characterization of transparent objects.

VI. REFRACTIVE INDEX MAP RECONSTRUCTION USING
DEFLECTION INFORMATION

Characterizing a transparent object consisting of heteroge-
neous optical media by studying its Refractive Index Map
(RIM), i.e., the spatial distribution of the refractive index, is
an important and challenging task for its manufacturing. In
this section we will focus on the task of reconstructing RIM
starting from deflection information.

The objective of the work is to demonstrate the relevance
of sparsity and compressive sensing ideas for RIM reconstruc-
tion, independent of how the deflection maps are acquired
(compressively or not). To emphasize that sparsity also helps
in efficiently reconstructing RIM of transparent objects, we
work with the deflection maps acquired (non-compressively)
using the classical phase shifting schlieren method.

As shown in Fig. 5 (left), consider a refractive index
map n(r), r ∈ R2 in the e1e2 plane (assuming that it is
invariant along e3), that characterizes a complex object. For
a given incident angle θ of the incoming light rays, schlieren
deflectometer measures a two-dimensional map of the effective
deflections ∆(θ, τ), where τ is the distance between the origin
and the incident light ray under consideration.
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Fig. 5: (left) Model of light deflection through a transparent object. (right)
TV model of RIM.

The measured deflection angles turn out to be the integral
of the transverse gradient of the RIM, along the path of the
light assumed to be straight (paraxial approximation) [12].
Notice that unlike the integration of the function itself in usual
tomographic settings, here the integration is on the gradient of
the function. Upon using the modified (deflectometric) Fourier
slice theorem, the Fourier transform yθ of ∆(θ, τ), along τ for
a fixed θ, provides one “slice” of the two-dimensional polar
Fourier transform n̂(k) of n(r) through the origin, but each
coefficient weighted by its distance to the frequency origin.
This weighting is in fact due to the integration of the gradient.

With a suitable discretization of the quantities and abuse
of notations, the vectorized RIM n and the vectorized Fourier
transform of the deflection angles yθ are related by

yθ = Φn + n, (7)

where Φ incorporates the Fourier operation and weighting
factors arising from the slice theorem [13].

Reconstructing n from the yθ involves measuring deflec-
tions from several incident angles θ and then solving an inverse
problem using the forward model (7). To stabilize the inverse
problem, suitable prior knowledge on n has to be incorporated.

For a wide class of human made transparent objects, the
RIM consists of slowly varying regions limited by sharp
boundaries, as in Fig. 5(right), and therefore the RIM is sparse
in the gradient domain. This prior knowledge about sparsity
greatly helps us in reducing the number Nθ of incident angles
that are needed to satisfactorily reconstruct the RIM.

Algorithmically, the RIM is reconstructed by promoting
a solution with least Total Variation (TV) norm ‖n‖TV =
‖∇n‖2,1 [14], [9], that also respects the forward model (7)
for a given noise level. The quality of the solution is further
improved by using additional prior knowledge such as the non-
negativity of n and relevant boundary conditions.

For a test object of a bundle of optical fibres, Fig. 6(left)
shows the reconstructed RIM, for the number of incident
angles Nθ = 60 (17% out of the possible 360 angles), using
the well known Filtered Back Projection (FBP) algorithm that
promotes a minimal `2 norm of the solution [15]. Fig. 6(right)
shows the RIM reconstructed using a TV minimization ap-
proach, for the same number of angles. The TV reconstruction
is better than that of FBP in not only suppressing the artifacts
outside the fibre regions, but also in recovering the sharp edges
between the fibres and the surroundings.

VII. CONCLUSIONS AND PERSPECTIVES

This paper presents a novel approach for obtaining deflec-
tion information of transparent objects using schlieren deflec-
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Fig. 6: An example of RIM reconstruction for a bundle of fibres with (left)
the FBP and (right) TV minimization approach.

tometer, and using this information to further characterize the
objects. It has been demonstrated that suitable sparsity prior
not only helps us to compressively acquire and reconstruct
deflection maps, but also in efficiently using these deflections
to reconstruct refractive index maps.

For further work, it is of foremost importance to understand
the noise properties to tune the reconstruction method. Meth-
ods have to be developed to fully exploit the rich nature of
deflection spectrum for object characterization. We also intend
to develop approaches to exploit redundant dictionaries (e.g.
undecimated wavelets), analysis-based reconstructions or cor-
relation between neighbouring spectra for their simultaneous
reconstruction.
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